

## SAPTHAGIRI COLLEGE OF ENGINEERING, BANGALORE-560057

(Affiliated to Visvesvaraya Technological University, Belgaum,

Approved by AICTE, New Delhi)

14/5, Chikkasandra, Hesaraghatta Main Road

Bengaluru - 560 057

## **Department of Electrical and Electronics Engineering**

## COURSE OUTCOMES-2017 SCHEME

|           | Sub  | ject:  | Transf                                                                                                                                                    | orm Ca   | alculus  | , Four   | ier Seri | ies An   | d Num    | erical T | echniqu   | es-18M    | AT31     |          |         |
|-----------|------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|----------|----------|----------|----------|-----------|-----------|----------|----------|---------|
| Course    | CO1: | Find t | the Fo                                                                                                                                                    | urier se | eries, h | alf ran  | ige Fou  | irier se | ries ar  | nd Fouri | er coeff  | icients o | of Perio | dic func | tions.  |
| Outcomes: | CO2: | Find t | the Fo                                                                                                                                                    | urier a  | nd inve  | erse Fo  | urier t  | ransfo   | rms of   | aperiod  | lic funct | ions.     |          |          |         |
|           | CO3: | Find 2 | Z-trans                                                                                                                                                   | forms    | and in   | verse Z  | Z-trans  | form,    | and to   | solve th | ne finite | differe   | nce equ  | ations u | sing Z- |
|           |      | trans  | forms.                                                                                                                                                    |          |          |          |          |          |          |          |           |           |          |          |         |
|           | CO4: | Apply  | / the co                                                                                                                                                  | oncept   | of sta   | tics for | curve    | fitting  | , corre  | lation a | nd regre  | ession    |          |          |         |
|           | CO5: | Solve  | the a                                                                                                                                                     | lgebra   | ic/tran  | scend    | ental e  | quatio   | on, inte | erpolati | ng poly   | nomials   | , Intern | nediate  | values  |
|           |      | and e  | evaluation of integrals using appropriate numerical techniques                                                                                            |          |          |          |          |          |          |          |           |           |          |          |         |
|           | CO6  | Evalu  | evaluation of integrals using appropriate numerical techniques<br>uate the integrals using Green's, Stokes and Gauss divergence theorem and able to apply |          |          |          |          |          |          |          |           |           |          |          |         |
|           |      | Euler  | 's equa                                                                                                                                                   | ation to | o find t | the ma   | xima o   | r mini   | ma of t  | he func  | tional.   |           |          |          |         |
| Mapping   | PO1  | PO2    | PO3                                                                                                                                                       | PO4      | PO5      | PO6      | PO7      | PO8      | PO9      | PO10     | PO11      | PO12      | PSO1     | PSO2     | PSO3    |
| CO1       | 3    | 2      | -                                                                                                                                                         | -        | -        | -        | -        | -        | -        | -        | -         | 2         | -        | -        | -       |
| CO2       | 3    | 2      | -                                                                                                                                                         | -        | -        | -        | -        | -        | -        | -        | -         | 2         | -        | -        | -       |
| CO3       | 2    | 1      | -                                                                                                                                                         | -        | -        | -        | -        | -        | -        | -        | -         | 1         | -        | -        | -       |
| CO4       | 3    | 1      | -                                                                                                                                                         | -        | -        | -        | -        | -        | -        | -        | -         | 2         | -        | -        | -       |
| CO5       | 3    | 2      | -                                                                                                                                                         | -        | -        | -        | -        | -        | -        | -        | -         | 2         | -        | -        | -       |
| CO6       | 2    | 2      | -                                                                                                                                                         | -        | -        | -        | -        | -        | -        | -        | -         | 2         | -        | -        | -       |

|           |      |        | S                                                                                                         | ubject                                  | : ELE   | CTRIC    | CCIRC    | CUIT A   | ANAL     | YSIS-15   | EE32      |          |           |      |      |  |  |
|-----------|------|--------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------|---------|----------|----------|----------|----------|-----------|-----------|----------|-----------|------|------|--|--|
| Course    | CO1: | Analy  | ze the e                                                                                                  | electric                                | circuit | with dif | fferent  | technic  | que (kvl | kcl sour  | ce transf | formatio | n star de | elta |      |  |  |
| Outcomes: |      | transf | ormati                                                                                                    | on node                                 | e mesh  | super r  | mesh sı  | iper no  | de).     |           |           |          |           |      |      |  |  |
|           | CO2: | Apply  | netwo                                                                                                     | rk theo                                 | rems in | electri  | c circui | ts       |          |           |           |          |           |      |      |  |  |
|           | CO3: | Exami  | ine the                                                                                                   | resona                                  | nce cor | ndition  | of para  | llel and | series   | RLC circu | iits.     |          |           |      |      |  |  |
|           | CO4: | Deter  | mine th                                                                                                   | nine the transient behavior of networks |         |          |          |          |          |           |           |          |           |      |      |  |  |
|           | CO5: | Evalua | nine the transient behavior of networks<br>Ite the two port parameters and unbalanced three phase systems |                                         |         |          |          |          |          |           |           |          |           |      |      |  |  |
| Mapping   | PO1  | PO2    | PO3                                                                                                       | PO4                                     | PO5     | PO6      | PO7      | PO8      | PO9      | PO10      | PO11      | PO12     | PSO1      | PSO2 | PSO3 |  |  |
| CO1       | 2    | 3      | -                                                                                                         | -                                       | -       | -        | -        | -        | -        | -         | -         | 3        | 2         | -    | 3    |  |  |
| CO2       | 2    | 3      | -                                                                                                         | -                                       | -       | -        | -        | -        | -        | -         | -         | 3        | 2         | -    | 3    |  |  |
| CO3       | 2    | 3      | -                                                                                                         | -                                       | I       | -        | -        | -        | -        | -         | -         | 2        | 2         | -    | -    |  |  |
| CO4       | 3    | 3      | -                                                                                                         | -                                       | -       | -        | -        | -        | -        | -         | -         | -        | 3         | -    | -    |  |  |
| CO5       | 2    | 2      | -                                                                                                         | -                                       | -       | -        | -        | -        | -        | -         | -         | -        | 2         | -    | 3    |  |  |

|           |      |         | Subj                                                                                                                            | ect: T  | RANS    | FORM     | IERS A  | AND C    | BENER    | RATOR           | S 15EE    | 33        |           |          |        |  |
|-----------|------|---------|---------------------------------------------------------------------------------------------------------------------------------|---------|---------|----------|---------|----------|----------|-----------------|-----------|-----------|-----------|----------|--------|--|
| Course    | CO1: | Expla   | in the                                                                                                                          | constr  | uction, | , opera  | tion a  | nd per   | formar   | nce of si       | ngle ph   | ase and   | three p   | hase     |        |  |
| Outcomes: |      | trans   | forme                                                                                                                           | rs      |         |          |         |          |          |                 |           |           |           |          |        |  |
|           | CO2: | Illusti | rate th                                                                                                                         | e use d | of auto | transf   | ormer   | , tap cl | nangin   | g and te        | rtiary w  | /inding t | transfor  | mer and  | ł      |  |
|           |      | Demo    | onstrat                                                                                                                         | te the  | operat  | ion of t | ransfo  | ormers   | in para  | allel.          |           |           |           |          |        |  |
|           | CO3: | Analy   | ze the                                                                                                                          | armat   | ure re  | action   | and co  | mmut     | ation a  | nd thei         | r effects | s in a DC | genera    | itor.    |        |  |
|           |      | Detei   | mine the voltage regulation of alternators using EMF, MMF, ZPF and ASA methods, onstrate parallel operation of alternators.     |         |         |          |         |          |          |                 |           |           |           |          |        |  |
|           |      | Demo    | rmine the voltage regulation of alternators using EMF, MMF, ZPF and ASA methods,<br>onstrate parallel operation of alternators. |         |         |          |         |          |          |                 |           |           |           |          |        |  |
|           | CO4: | Const   | truct tl                                                                                                                        | ne pow  | /er ang | le cha   | racteri | stics fo | or fixed | input a         | nd varia  | able exc  | itation a | and vice | versa. |  |
|           |      | Instru  | uct V c                                                                                                                         | urves a | and inv | erted V  | / curve | es, pov  | ver flov | <i>w</i> diagra | ım. Expl  | ain two   | reactio   | n theory | /,     |  |
|           |      | reluc   | tance                                                                                                                           | oower   | and sli | p test   | of sync | hrono    | us mad   | chine.          |           |           |           |          |        |  |
| Mapping   | PO1  | PO2     | PO3                                                                                                                             | PO4     | PO5     | PO6      | PO7     | PO8      | PO9      | PO10            | PO11      | PO12      | PSO1      | PSO2     | PSO3   |  |
| CO1       | 3    | 2       | -                                                                                                                               | -       | -       | -        | -       | -        | -        | -               | -         | 2         | 3         | 2        | -      |  |
| CO2       | 3    | 2       | -                                                                                                                               | 2       | -       | -        | I       | -        | I        | -               | -         | 2         | 3         | 2        | -      |  |
| CO3       | 2    | 3       | -                                                                                                                               | 2       | -       | -        | -       | -        | -        | -               | -         | -         | 3         | 2        | -      |  |
| CO4       | 2    | 3       | -                                                                                                                               | 2       | -       | -        | -       | -        | -        | -               | -         | -         | 3         | 2        | -      |  |

|           |      |       | Su                                                                                                                                                                 | bject:   | ANA     | LOG E    | ELECT    | ONIC     | S CIRO  | CUITS 1   | 15EE34     |          |           |           |      |
|-----------|------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------|----------|----------|----------|---------|-----------|------------|----------|-----------|-----------|------|
| Course    | CO1: | Analy | /se the                                                                                                                                                            | transi   | stor ch | aracte   | ristics  | and de   | esign B | iasing ci | ircuits fo | or Ampl  | ifiers, O | scillator | s &  |
| Outcomes: |      | Swite | hing C                                                                                                                                                             | ircuits. |         |          |          |          |         |           |            |          |           |           |      |
|           | CO2: | Exam  | ine th                                                                                                                                                             | e beha   | viour d | of Tran  | sistor ( | circuits | at LO   | W & HIG   | GH Freq    | uency re | egions a  | nd how    | the  |
|           |      | perfo | rmanc                                                                                                                                                              | e para   | meter   | s of sin | igle sta | ge & c   | ascade  | ed ampli  | ifiers ge  | ts affec | ted.      |           |      |
|           | CO3: | Class | ify diff                                                                                                                                                           | erent t  | ypes o  | of Oscil | lators   | using T  | ransist | tor & ar  | nalyse 8   | k design | the san   | ne.       |      |
|           | CO4: | Analy | ify different types of Oscillators using Transistor & analyse & design the same.<br>(se different types of Power Amplifiers using Transistors and design the same. |          |         |          |          |          |         |           |            |          |           |           |      |
|           | CO5: | Desig | gn amp                                                                                                                                                             | lifiers  | using J | FET/M    | OSFET    |          |         |           |            |          |           |           |      |
| Mapping   | PO1  | PO2   | PO3                                                                                                                                                                | PO4      | PO5     | PO6      | PO7      | PO8      | PO9     | PO10      | PO11       | PO12     | PSO1      | PSO2      | PSO3 |
| CO1       | 2    | 3     | 2                                                                                                                                                                  | -        | -       | -        | -        | -        | -       | -         | -          | 2        | 3         | -         | 2    |
| CO2       | 2    | 3     | 2                                                                                                                                                                  | -        | -       | -        | -        | -        | -       | -         | -          | 2        | 3         | -         | 2    |
| CO3       | -    | 3     | 2                                                                                                                                                                  | -        | -       | -        | -        | -        | -       | -         | -          | -        | -         | -         | -    |
| CO4       | -    | 3     | 2                                                                                                                                                                  | -        | -       | -        | -        | -        | -       | -         | -          | 2        | -         | -         | -    |
| CO5       | -    | 3     | 3                                                                                                                                                                  | -        | -       | -        | -        | -        | -       | -         | -          | -        | 2         | -         | 2    |

|           |      |       |                            | Subje    | ect: D   | IGITA   | L SYS   | TEM I   | DESIG  | N -15E   | E35      |          |          |          |      |
|-----------|------|-------|----------------------------|----------|----------|---------|---------|---------|--------|----------|----------|----------|----------|----------|------|
| Course    | CO1: | Analy | ze the                     | comb     | inatior  | al circ | uits    |         |        |          |          |          |          |          |      |
| Outcomes: | CO2: | Desig | n the o                    | circuits | of add   | der, su | btracto | or, cod | e-conv | erters,r | nultiple | xers,de- | multiple | exers ar | nd   |
|           |      | comp  | arator                     | s.       |          |         |         |         |        |          |          |          |          |          |      |
|           | CO3: | Desig | gn the sequential circuits |          |          |         |         |         |        |          |          |          |          |          |      |
|           | CO4: | Expla | in the                     | concer   | ot of co | ounter  | s, sequ | ence g  | enerat | tors and | basics   | of HDL p | program  | ming     |      |
| Mapping   | PO1  | PO2   | PO3                        | PO4      | PO5      | PO6     | PO7     | PO8     | PO9    | PO10     | PO11     | PO12     | PSO1     | PSO2     | PSO3 |
| CO1       | 3    | 3     | -                          | -        | -        | -       | -       | -       | -      | -        | -        | 3        | 3        | -        | 2    |
| CO2       | 2    | 3     | 3                          | -        | -        | -       | -       | -       | -      | -        | -        | 2        | 2        | -        | 2    |
| CO3       | 2    | 2     | 3                          | -        | -        | -       | -       | -       | -      | -        | -        | 2        | 2        | -        | 2    |
| CO4       | 2    | 2     | -                          | -        | -        | -       | -       | -       | -      | -        | -        | 2        | 2        | -        | 2    |

|           |      | Subje  | ect: EI                                                                                             | LECTF   | RICAL    | & EL    | ECTR   | ONICS   | S MEA   | SUREN    | <b>IENTS</b> | -15EE3    | 6        |         |       |
|-----------|------|--------|-----------------------------------------------------------------------------------------------------|---------|----------|---------|--------|---------|---------|----------|--------------|-----------|----------|---------|-------|
| Course    | CO1: | Desci  | ribe th                                                                                             | e impo  | rtance   | of uni  | ts and | dimen   | sions,  | measur   | ement o      | of resist | ance, in | ductanc | e and |
| Outcomes: |      | capad  | citance                                                                                             | using   | bridge   | s and o | determ | nine ea | rth res | istance  |              |           |          |         |       |
|           | CO2: | Discu  | ss the                                                                                              | workir  | ng of va | arious  | meters | s used  | for me  | asurem   | ent of P     | ower &    | Energy   |         |       |
|           | CO3: | Expla  | in the                                                                                              | calibra | tion &   | errors  | in ene | ergy m  | eters 8 | k also m | ethods       | of exter  | nding th | e range | of    |
|           |      | instru | uments & instrument transformers.                                                                   |         |          |         |        |         |         |          |              |           |          |         |       |
|           | CO4: | Exam   | uments & instrument transformers.<br>nine the working of different electronic& digital instruments. |         |          |         |        |         |         |          |              |           |          |         |       |
|           | CO5: | Analy  | vze var                                                                                             | ious di | splay o  | levices | and re | ecordir | ng mec  | hanism   | S            |           |          |         |       |
| Mapping   | PO1  | PO2    | PO3                                                                                                 | PO4     | PO5      | PO6     | PO7    | PO8     | PO9     | PO10     | PO11         | PO12      | PSO1     | PSO2    | PSO3  |
| CO1       | 3    | -      | -                                                                                                   | -       | -        | -       | -      | -       | -       | -        | -            | 2         | 2        | -       | -     |
| CO2       | 2    | -      | -                                                                                                   | -       | -        | -       | -      | -       | -       | -        | -            | 2         | 2        | -       | -     |
| CO3       | 2    | 2      | -                                                                                                   | -       | -        | -       | -      | -       | -       | -        | -            | 2         | 2        | -       | -     |
| CO4       | 2    | 2      | -                                                                                                   | -       | -        | -       | -      | -       | -       | -        | -            | 3         | 2        | -       | 3     |
| CO5       | 2    | 2      | -                                                                                                   | -       | -        | -       | -      | -       | -       | -        | -            | 3         | 2        | -       | -     |

|           |      |       | Su                                                                                              | bject:  | ELEC   | TRICA   | AL MA  | CHIN    | IES LA  | AB 1 -15 | SEEL37     |           |         |         |      |  |
|-----------|------|-------|-------------------------------------------------------------------------------------------------|---------|--------|---------|--------|---------|---------|----------|------------|-----------|---------|---------|------|--|
| Course    | CO1: | Evalu | ate th                                                                                          | e perfo | rmano  | e of tr | ansfor | mers f  | rom th  | e test d | ata obta   | ained     |         |         |      |  |
| Outcomes: | CO2: | Oper  | ate tw                                                                                          | o singl | e phas | e trans | forme  | rs of d | ifferen | t KVA ra | iting in I | parallel. |         |         |      |  |
|           | CO3: | Demo  | onstrat                                                                                         | te sing | e phas | e tran  | sforme | ers for | three p | hase of  | peratior   | n and ph  | ase con | version |      |  |
|           | CO4: | Com   | pute the voltage regulation of synchronous generator using the test data obtained in the        |         |        |         |        |         |         |          |            |           |         |         |      |  |
|           |      | labor | pute the voltage regulation of synchronous generator using the test data obtained in the ratory |         |        |         |        |         |         |          |            |           |         |         |      |  |
| Mapping   | PO1  | PO2   | PO3                                                                                             | PO4     | PO5    | PO6     | PO7    | PO8     | PO9     | PO10     | PO11       | PO12      | PSO1    | PSO2    | PSO3 |  |
| CO1       | 2    | 3     | -                                                                                               | 2       | -      | -       | -      | -       | 3       | 2        | -          | 2         | 3       | -       | 2    |  |
| CO2       | 2    | 3     | -                                                                                               | 2       | -      | -       | -      | -       | 3       | 2        | -          | 2         | 3       | -       | 2    |  |
| CO3       | 2    | 3     | -                                                                                               | 2       | -      | -       | -      | -       | 3       | 2        | 2          | 2         | 3       | -       | 2    |  |
| CO4       | 2    | 3     | -                                                                                               | 2       | -      | -       | -      | -       | 3       | 2        | 2          | 2         | 3       | -       | 2    |  |

|           |      |        |                                                                                                                 | Su        | bject:   | ELEC     | CTRON     | VICS L   | AB -1   | 5EEL38    | 3       |        |      |      |      |
|-----------|------|--------|-----------------------------------------------------------------------------------------------------------------|-----------|----------|----------|-----------|----------|---------|-----------|---------|--------|------|------|------|
| Course    | CO1: | Desig  | n and to                                                                                                        | est diffe | erent di | iode cir | cuits.    |          |         |           |         |        |      |      |      |
| Outcomes: | CO2: | Exper  | iment v                                                                                                         | vith am   | plifier  | and osc  | illator o | circuits | to anal | yze their | perform | nance. |      |      |      |
|           | CO3: | Explai | ain universal gates and ICs for code conversion and arithmetic operations.                                      |           |          |          |           |          |         |           |         |        |      |      |      |
|           | CO4: | Desig  | ain universal gates and ICs for code conversion and arithmetic operations.<br>ign and verify different counters |           |          |          |           |          |         |           |         |        |      |      |      |
| Mapping   | PO1  | PO2    | PO3                                                                                                             | PO4       | PO5      | PO6      | PO7       | PO8      | PO9     | PO10      | PO11    | PO12   | PSO1 | PSO2 | PSO3 |
| CO1       | 2    | 3      | 3                                                                                                               | -         | 2        | -        | -         | -        | 3       | 3         | -       | 3      | 2    | 2    | 2    |
| CO2       | 3    | 3      | -                                                                                                               | -         | -        | -        | -         | -        | 3       | 3         | -       | -      | 3    | -    | 2    |
| CO3       | 3    | 3      | -                                                                                                               | -         | -        | -        | -         | -        | 2       | 3         | 2       | 3      | 3    | -    | 2    |
| CO4       | 3    | 3      | 3                                                                                                               | -         | -        | -        | -         | -        | 3       | 3         | 2       | -      | 3    | -    | 2    |

|           |      | Subject: ENGINEERING MATHEMATICS IV-15MAT41                                                                        |
|-----------|------|--------------------------------------------------------------------------------------------------------------------|
| Course    | CO1: | Apply appropriate numerical methods to solve ordinary differential equations                                       |
| Outcomes: | CO2: | Derive and Apply Bessel's function, Legendre's polynomials & Rodrigue's formula, and its properties.               |
|           | CO3: | Analyze and solve the probability distribution problems.                                                           |
|           | CO4: | Analyze and interpret the hypothesis for the given sampling distribution and to solve stochastic process problems. |

|         | CO5: | Able   | to defi                                                                           | ne hyp | othesi  | s, anal | yze an   | d inter | pret th | ne hypot | thesis fo | or the gi | ven sam | npling |   |
|---------|------|--------|-----------------------------------------------------------------------------------|--------|---------|---------|----------|---------|---------|----------|-----------|-----------|---------|--------|---|
|         |      | distri | bution                                                                            | and to | o solve | stocha  | astic pr | ocess   | proble  | ms.      |           |           |         |        |   |
| Mapping | PO1  | PO2    | PO3   PO4   PO5   PO6   PO7   PO8   PO9   PO10   PO11   PO12   PS01   PS02   PS03 |        |         |         |          |         |         |          |           |           |         |        |   |
| CO1     | 3    | 2      | -                                                                                 | -      | -       | -       | -        | -       | -       | -        | -         | 2         | 3       | 3      | 3 |
| CO2     | 3    | 1      | -                                                                                 | -      | -       | -       | -        | -       | -       | -        | -         | 2         | 3       | 3      | 3 |
| CO3     | 3    | 1      | -                                                                                 | -      | -       | -       | -        | -       | -       | -        | -         | 2         | 3       | 3      | 3 |
| CO4     | 3    | 2      | -                                                                                 | -      | -       | -       | -        | -       | -       | -        | -         | 2         | 3       | 3      | 3 |
| CO5     | 3    | 2      | -                                                                                 | -      | -       | -       | -        | -       | -       | -        | -         | 2         | 3       | 3      | 3 |

|           |      | S     | ubject                                                                                                                                                  | t: POV | WER (   | GENEF    | RATIO    | N AN     | D ECC   | NOMI     | CS -15E  | EE42     |          |          |      |  |
|-----------|------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------|----------|----------|----------|---------|----------|----------|----------|----------|----------|------|--|
| Course    | CO1: | Expla | in the                                                                                                                                                  | workir | ng of h | ydroele  | ectric p | olants a | and ste | am pov   | ver plan | ts state | the fun  | ctions o | f    |  |
| Outcomes: |      | majo  | r equip                                                                                                                                                 | ment   | of pow  | ver plai | nts      |          |         |          |          |          |          |          |      |  |
|           | CO2: | Desci | ribe th                                                                                                                                                 | e work | ing of  | nuclea   | r powe   | er plan  | ts and  | state fu | nctions  | of majo  | or equip | ment of  | the  |  |
|           |      | powe  | er plant                                                                                                                                                | t      |         |          |          |          |         |          |          |          |          |          |      |  |
|           | CO3: | Class | ify various substations and explain the importance of grounding                                                                                         |        |         |          |          |          |         |          |          |          |          |          |      |  |
|           | CO4: | Ident | sify various substations and explain the importance of grounding<br>htify economic aspects of power system operation and the importance of power factor |        |         |          |          |          |         |          |          |          |          |          |      |  |
|           |      | impro | oveme                                                                                                                                                   | nt     |         |          |          |          |         |          |          |          |          |          |      |  |
| Mapping   | PO1  | PO2   | PO3                                                                                                                                                     | PO4    | PO5     | PO6      | PO7      | PO8      | PO9     | PO10     | PO11     | PO12     | PSO1     | PSO2     | PSO3 |  |
| CO1       | 3    | -     | -                                                                                                                                                       | -      | -       | -        | 2        | -        | -       | -        | -        | 3        | 3        | -        | -    |  |
| CO2       | 2    | 2     | -                                                                                                                                                       | -      | -       | 2        | 2        | -        | -       | -        | -        | -        | 2        | -        | -    |  |
| CO3       | 2    | 3     | -                                                                                                                                                       | -      | -       | 2        | 2        | -        | -       | -        | -        | 3        | 2        | -        | -    |  |
| CO4       | 2    | 3     | -                                                                                                                                                       | -      | -       | 3        | -        | -        | -       | -        | 3        | 3        | 2        | -        | 3    |  |

|           |      |        | Subj     | ect: T         | RANS     | MISSI    | ON Al    | ND DI    | STRIB    | UTION     | -15EE     | 43               |            |            |       |  |
|-----------|------|--------|----------|----------------|----------|----------|----------|----------|----------|-----------|-----------|------------------|------------|------------|-------|--|
| Course    | CO1: | Explai | in the c | oncept         | s and ir | nportar  | nce of H | IVAC, H  | VDC, E   | HVAC an   | d UHVA    | C transm         | ission lir | ies and it | S     |  |
| Outcomes: |      | comp   | onents   |                |          |          |          |          |          |           |           |                  |            |            |       |  |
|           | CO2: | Derive | e induc  | tance a        | nd capa  | acitance | e of ove | erhead   | transmi  | ssion sys | stem.     |                  |            |            |       |  |
|           | CO3: | Deter  | mine th  | ne para        | meters   | of the   | transmi  | ssion li | ne for o | different | configur  | ations a         | nd asses   | the        |       |  |
|           |      | perfo  | rmance   | mance of line. |          |          |          |          |          |           |           |                  |            |            |       |  |
|           | CO4: | Descr  | ibe the  | use of         | underg   | round    | cables,  | corona   | and eva  | aluate di | fferent t | ypes of <i>i</i> | AC distrik | oution sy  | stem. |  |
| Mapping   | PO1  | PO2    | PO3      | PO4            | PO5      | PO6      | PO7      | PO8      | PO9      | PO10      | PO11      | PO12             | PSO1       | PSO2       | PSO3  |  |
| CO1       | 3    | 2      | -        | -              | -        | 2        | -        | -        | -        | -         | -         | 2                | 3          | -          | 2     |  |
| CO2       | 3    | 2      | -        | -              | -        | 2        | -        | -        | -        | -         | -         | 2                | 3          | -          | 2     |  |
| CO3       | 2    | 2      | 2        | -              | -        | 2        | -        | -        | -        | -         | -         | -                | 2          | -          | 2     |  |
| CO4       | 2    | 2      | -        | -              | -        | 2        | -        | -        | -        | -         | -         | 2                | 2          | -          | 2     |  |

|           |      |         |          | S        | ubject   | t: ELE  | ECTRI     | C MO     | FOR-1    | 5EE44     |           |         |          |           |      |
|-----------|------|---------|----------|----------|----------|---------|-----------|----------|----------|-----------|-----------|---------|----------|-----------|------|
| Course    | CO1: | Explair | n the c  | onstruc  | tional f | eature  | s of Mo   | tors.    |          |           |           |         |          |           |      |
| Outcomes: | CO2: | Analys  | se and a | assess t | he peri  | forman  | ce char   | acterist | ics of D | OC motor  | rs by con | ducting | suitable | tests and | ł    |
|           | CO3: | Apply   | the cor  | ncept o  | f speed  | Contro  | ol of inc | luction  | motor    | bv a suit | able met  | hod.    |          |           |      |
|           | CO4: | Apply   | the cor  | ncept o  | f Synch  | ronous  | motor     |          |          | -,        |           |         |          |           |      |
|           | CO5: | Analy   | /se the  | perfo    | rmanc    | e of Th | ree Ph    | nase an  | d Sing   | le phase  | e induct  | ion Mot | ors.     |           |      |
| Mapping   | PO1  | PO2     | PO3      | PO4      | PO5      | PO6     | PO7       | PO8      | PO9      | PO10      | PO11      | PO12    | PSO1     | PSO2      | PSO3 |

| CO1 | 3 | 3 | - | - | - | - | - | - | - | - | - | - | - | - | - |
|-----|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| CO2 | 3 | 3 | - | 2 | - | - | - | - | - | - | - | - | 2 | - | - |
| CO3 | 3 | 3 | - | 2 | - | - | - | - | - | - | - | - | 3 | - | - |
| CO4 | 3 | 2 | - | - | - | - | - | - | - | - | - | 2 | 3 | - | - |
| CO5 | 3 | 2 | - | - | - | - | - | - | - | - | - | 2 | - | - | - |

|           |      |                  |                     |                                                                                             | Subje     | ct: FI    | ELD T    | HEOR     | RY -15   | EE45      |            |          |            |           |       |  |  |
|-----------|------|------------------|---------------------|---------------------------------------------------------------------------------------------|-----------|-----------|----------|----------|----------|-----------|------------|----------|------------|-----------|-------|--|--|
| Course    | CO1: | Explai           | n the c             | oncept                                                                                      | of grac   | lient, di | vergen   | ce and   | curl of  | a vector. | Assess t   | ime vary | /ing field | s and     |       |  |  |
| Outcomes: |      | propa            | gation              | of wav                                                                                      | es in dif | fferent   | media.   |          |          |           |            |          |            |           |       |  |  |
|           | CO2: | Explai<br>config | n Coulo<br>guration | omb's L<br>ns.                                                                              | aw and    | Gauss     | Law fo   | r the ev | aluatio  | n of elec | tric field | s produc | ed by di   | fferent c | harge |  |  |
|           | CO3: | Deter            | mine th             | ne ener                                                                                     | gy and    | potenti   | al due   | to a sys | tem of   | charges.  |            |          |            |           |       |  |  |
|           | CO4: | Illustr          | ate the             | behav                                                                                       | ior of el | ectric f  | ield acr | oss a b  | oundar   | y betwee  | en a con   | ductor a | nd dieleo  | tric and  |       |  |  |
|           |      | betwe            | een two             | en two different dielectrics.                                                               |           |           |          |          |          |           |            |          |            |           |       |  |  |
|           | CO5: | Evalua           | ate the             | en two different dielectrics.<br>te the behavior of magnetic fields and magnetic materials. |           |           |          |          |          |           |            |          |            |           |       |  |  |
|           | CO6  | Relate           | e time v            | varying                                                                                     | fields a  | nd prop   | oagatio  | n of wa  | ves in d | different | media.     |          |            |           |       |  |  |
| Mapping   | PO1  | PO2              | PO3                 | PO4                                                                                         | PO5       | PO6       | PO7      | PO8      | PO9      | PO10      | PO11       | PO12     | PSO1       | PSO2      | PSO3  |  |  |
| CO1       | 3    | 3                | -                   | -                                                                                           | -         | -         | -        | -        | -        | -         | -          | -        | 3          | -         | -     |  |  |
| CO2       | 3    | 3                | -                   | -                                                                                           | -         | -         | -        | -        | -        | -         | -          | -        | 3          | -         | -     |  |  |
| CO3       | 2    | 2                | -                   | -                                                                                           | -         | -         | -        | -        | -        | -         | -          | -        | 2          | -         | -     |  |  |
| CO4       | 2    | 2                | -                   | -                                                                                           | -         | -         | -        | -        | -        | -         | -          | -        | 2          | -         | -     |  |  |
| CO5       | 2    | 2                | -                   | 2                                                                                           | -         | -         | -        | -        | -        | -         | -          | -        | 2          | -         | -     |  |  |
| CO6       | 3    | 3                | -                   | 2                                                                                           | -         | -         | -        | -        | -        | -         | -          | -        | 3          | -         | -     |  |  |

|           |      |        |                                                                                                                                                       | Sub      | ject: (  | OP-AN    | IPS &    | LINE     | AR ICS   | S- 15EE | 46        |          |          |            |      |  |
|-----------|------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|----------|----------|----------|---------|-----------|----------|----------|------------|------|--|
| Course    | CO1: | Explai | in the b                                                                                                                                              | basics o | of Op-A  | mp, cha  | racteri  | stic fea | tures, c | pen-loo | p / close | d-loop o | peration | s, differe | nt   |  |
| Outcomes: |      | config | guratior                                                                                                                                              | ns toget | ther wi  | th Linea | ar appli | cations  | and op   | eration | of DC Vo  | ltage Re | gulators |            |      |  |
|           | CO2: | Analy  | se Acti                                                                                                                                               | ve Filte | rs, Sign | al Gene  | erators  | using C  | p-Amp    | s.      |           |          |          |            |      |  |
|           | CO3: | Desig  | n variou                                                                                                                                              | us type: | s of Co  | mparat   | ors & c  | onverte  | ers usin | g op-am | ps        |          |          |            |      |  |
|           | CO4: | Analy  | lyse & Design various Signal Processing circuits and A/D and D/A converters.                                                                          |          |          |          |          |          |          |         |           |          |          |            |      |  |
|           | CO5: | Explai | alyse & Design various Signal Processing circuits and A/D and D/A converters.<br>Iain the operation of Phase Locked Loop (PLL) & Timer ICs (555Timer) |          |          |          |          |          |          |         |           |          |          |            |      |  |
| Mapping   | PO1  | PO2    | PO3                                                                                                                                                   | PO4      | PO5      | PO6      | PO7      | PO8      | PO9      | PO10    | PO11      | PO12     | PSO1     | PSO2       | PSO3 |  |
| CO1       | 3    | 2      | -                                                                                                                                                     | -        | -        | -        | -        | -        | -        | -       | -         | 2        | 3        | -          | 2    |  |
| CO2       | 2    | 3      | 2                                                                                                                                                     | -        | -        | -        | -        | -        | -        | -       | -         | 3        | 2        | -          | 3    |  |
| CO3       | 2    | 3      | 2                                                                                                                                                     | -        | -        | -        | -        | -        | -        | -       | -         | 3        | 2        | -          | 2    |  |
| CO4       | 2    | 3      | 2                                                                                                                                                     | -        | -        | -        | -        | -        | -        | -       | -         | 3        | 2        | -          | 3    |  |
| CO5       | 3    | 2      | -                                                                                                                                                     | -        | -        | -        | -        | -        | -        | -       | -         | 2        | 3        | -          | 2    |  |

|           |      |                                                                                                                                                             | 5       | Subjec   | t: ELI  | ECTRI    | C MA     | CHIN     | E LAB   | 2-15E     | EL47       |           |         |      |      |
|-----------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------|---------|----------|----------|----------|---------|-----------|------------|-----------|---------|------|------|
| Course    | CO1: | Demo                                                                                                                                                        | nstrate | the sp   | eed coi | ntrol of | DC ma    | chines   |         |           |            |           |         |      |      |
| Outcomes: | CO2: | Deter                                                                                                                                                       | mine th | ne perfo | ormanc  | e chara  | cteristi | cs of do | machi   | nes by co | onductin   | g suitabl | e tests |      |      |
|           | CO3: | CO3: Analyse the performance of single phase and three phase induction motor                                                                                |         |          |         |          |          |          |         |           |            |           |         |      |      |
|           | CO4: | CO3: Analyse the performance of single phase and three phase induction motor<br>CO4: Test induction motor to pre-determine the performance characteristics. |         |          |         |          |          |          |         |           |            |           |         |      |      |
|           | CO5: | Evalua                                                                                                                                                      | ate per | forman   | ce of s | ynchroi  | nous m   | otor to  | draw tl | he chara  | cteristics | s curves. |         |      |      |
| Mapping   | PO1  | PO2                                                                                                                                                         | PO3     | PO4      | PO5     | PO6      | PO7      | PO8      | PO9     | PO10      | PO11       | PO12      | PSO1    | PSO2 | PSO3 |
| CO1       | 2    | 3                                                                                                                                                           | -       | 2        | 2       | -        | -        | -        | 2       | 3         | 2          | 2         | 2       | 2    | 2    |

| CO2 | 3 | 2 | - | - | - | - | - | - | 2 | 2 | - | 2 | 3 | - | 2 |
|-----|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| CO3 | 2 | 3 | - | - | - | - | - | - | 2 | 2 | - | 2 | 2 | - | 2 |
| CO4 | 2 | 3 | - | - | - | - | - | - | 2 | 2 | - | 2 | 2 | - | 2 |
| CO5 | 2 | 2 | - | - | - | - | - | - | 2 | 2 | - | 2 | 2 | - | 2 |

|           |      |       |                                                                                                                                                        | Su      | bject:   | OP-A     | MP &     | LIC L    | AB -1     | 5EEL48    | 3         |           |          |          |      |  |
|-----------|------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------|----------|----------|----------|-----------|-----------|-----------|-----------|----------|----------|------|--|
| Course    | CO1: | Deter | mine th                                                                                                                                                | ne char | acterist | ics para | ameters  | s of op- | amp pr    | actically | like Gair | n,Freque  | ncy resp | onse,etc |      |  |
| Outcomes: | CO2: | Desig | n the o                                                                                                                                                | p-amp,  | adder,s  | ubtract  | or,diffe | erentiat | or, & ir: | ntegrato  | r and tes | t the per | formanc  | e.       |      |  |
|           | CO3: | Analy | se Oscillator and filters using op-amp and test its performance<br>n linear IC'S like 555 timer as Multivibrator power supply and test its performance |         |          |          |          |          |           |           |           |           |          |          |      |  |
|           | CO4: | Desig | n linear IC'S like 555 timer as Multivibrator power supply and test its performance                                                                    |         |          |          |          |          |           |           |           |           |          |          |      |  |
| Mapping   | PO1  | PO2   | PO3                                                                                                                                                    | PO4     | PO5      | PO6      | PO7      | PO8      | PO9       | PO10      | PO11      | PO12      | PSO1     | PSO2     | PSO3 |  |
| CO1       | 3    | 2     | -                                                                                                                                                      | -       | -        | -        | -        | -        | 3         | 2         | 2         | 3         | 3        | -        | 3    |  |
| CO2       | 2    | 3     | 3                                                                                                                                                      | -       | -        | -        | -        | -        | 3         | 3         |           | 3         | 2        | -        | 2    |  |
| CO3       | 2    | 3     | 3                                                                                                                                                      | 2       | -        | -        | -        | -        | 3         | 2         |           | 3         | 2        | -        | 3    |  |
| CO4       | 2    | 3     | 3                                                                                                                                                      | -       | -        | -        | -        | -        | 3         | 3         |           | 3         | 2        | -        | 2    |  |

|           |      | Sı     | ubject                                                                                           | : MAN    | VAGE     | MENT      | AND     | ENTR     | EPRE     | NEURS      | HIP-15    | EE51      |           |           |        |  |
|-----------|------|--------|--------------------------------------------------------------------------------------------------|----------|----------|-----------|---------|----------|----------|------------|-----------|-----------|-----------|-----------|--------|--|
| Course    | CO1: | Identi | fy the f                                                                                         | ield of  | manag    | ement,    | task of | the ma   | nager,   | planning   | ; and the | need of   | proper s  | staff,    |        |  |
| Outcomes: |      | recrui | tment                                                                                            | and sel  | ection   | process   |         |          |          |            |           |           |           |           |        |  |
|           | CO2: | Build  | the soc                                                                                          | ial resp | onsibili | ity of bi | usiness | and lea  | dershi   | C          |           |           |           |           |        |  |
|           | CO3: | Analy  | ze the o                                                                                         | concept  | ts of en | treprer   | neurshi | o and tl | ne role  | and imp    | ortance   | of the er | itreprene | eur in ec | onomic |  |
|           |      | devel  | opmen                                                                                            | t        |          |           |         |          |          |            |           |           |           |           |        |  |
|           | CO4: | Explai | in the r                                                                                         | ole and  | import   | tance o   | f Small | Scale Ir | ndustrie | es, busin  | ess plan  | and its p | resentat  | ion       |        |  |
|           | CO5: | Evalua | ate concepts of project management, capitol building process, project feasibility study, project |          |          |           |         |          |          |            |           |           |           |           |        |  |
|           |      | appra  | isal and                                                                                         | d projec | ct finan | cing. th  | e state | /centra  | al level | institutio | ons / age | ncies su  | pporting  | business  | 5      |  |
|           |      | enter  | prises                                                                                           |          |          |           |         |          |          |            |           |           |           |           |        |  |
| Mapping   | PO1  | PO2    | PO3                                                                                              | PO4      | PO5      | PO6       | PO7     | PO8      | PO9      | PO10       | PO11      | PO12      | PSO1      | PSO2      | PSO3   |  |
| CO1       | -    | -      | -                                                                                                | -        | -        | -         | -       | -        | 2        | 3          | -         | 2         | -         | -         | -      |  |
| CO2       | -    | -      | -                                                                                                | -        | -        | 3         | -       | 3        | -        | -          | -         | 2         | -         | -         | -      |  |
| CO3       | -    | -      | -                                                                                                | -        | -        | 2         | -       | -        | -        | -          | -         | 3         | -         | -         | -      |  |
| CO4       | -    | -      | -                                                                                                | -        | -        | -         | 2       | -        | -        | -          | -         | -         | -         | -         | -      |  |
| CO5       | -    | -      | -                                                                                                | -        | -        | -         | -       | -        | 3        | 2          | 3         | 2         | -         | -         | 3      |  |

|           |      | Subject: MICROCONTROLLER -15EE52                                                              |
|-----------|------|-----------------------------------------------------------------------------------------------|
| Course    | CO1: | Discuss the history of the 8051 and features of other 8051 family members and internal        |
| Outcomes: |      | architecture, addressing modes of 8051                                                        |
|           | CO2: | Analyse the use of 8051 assembler, the stack and the flag register, loop, jump and call       |
|           |      | instructions                                                                                  |
|           | CO3: | Develop and analyse 8051C programs for time delay, I/O bit manipulation, logic and arithmetic |
|           |      | operations, data conversion and data serialization                                            |

|         | CO4:<br>CO5: | Make<br>its inf<br>progr<br>Expla<br>chips<br>and r | e use o<br>terfacin<br>rams.<br>in the<br>and se<br>elays, | f the h<br>ng to R<br>Interfa<br>ensors<br>opto is | ardwa<br>S232 a<br>acing o<br>and in<br>solator | re con<br>and dis<br>f 8051<br>terface<br>s and r | nection<br>cuss in<br>with re<br>8031,<br>notors | n of 80<br>detail<br>eal-wo<br>/8051 | 51 chip<br>8051 i<br>rld dev<br>with ex | o, its tim<br>interrup<br>vices suc<br>kternal r | ners, ser<br>ts and v<br>ch as LC<br>nemori | ial data<br>writing i<br>Ds and l<br>es, 8255 | commu<br>nterrup<br>keyboar<br>5 chip to | inication<br>t handle<br>ds, ADC<br>add po | n and<br>er<br>, DAC<br>rts |
|---------|--------------|-----------------------------------------------------|------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------|---------------------------------------------------|--------------------------------------------------|--------------------------------------|-----------------------------------------|--------------------------------------------------|---------------------------------------------|-----------------------------------------------|------------------------------------------|--------------------------------------------|-----------------------------|
| Mapping | PO1          | PO2                                                 | PO3                                                        | PO4                                                | PO5                                             | PO6                                               | PO7                                              | PO8                                  | PO9                                     | PO10                                             | PO11                                        | PO12                                          | PSO1                                     | PSO2                                       | PSO3                        |
| CO1     | 2            | -                                                   | -                                                          | -                                                  | -                                               | -                                                 | -                                                | -                                    | -                                       | -                                                | -                                           | 2                                             | 2                                        | -                                          | 2                           |
| CO2     | 2            | 3                                                   | -                                                          | -                                                  | -                                               | -                                                 | -                                                | -                                    | -                                       | -                                                | -                                           | -                                             | 2                                        | -                                          | 2                           |
| CO3     | 3            | 3                                                   | -                                                          | -                                                  | -                                               | -                                                 | -                                                | -                                    | -                                       | -                                                | -                                           | 3                                             | 3                                        | -                                          | 3                           |
| CO4     | 3            | -                                                   | -                                                          | -                                                  | -                                               | -                                                 | -                                                | -                                    | -                                       | -                                                | -                                           | 2                                             | 3                                        | -                                          | 2                           |
| CO5     | 3            | 2                                                   | -                                                          | -                                                  | -                                               | -                                                 | -                                                | -                                    | -                                       | -                                                | 2                                           | 2                                             | 3                                        | -                                          | 3                           |

|           |      |         |                                                                                                                   | Sub     | ject:   | POWE     | ER ELF   | ECTRO     | ONICS   | -15EE5    | 53       |           |         |      |      |  |
|-----------|------|---------|-------------------------------------------------------------------------------------------------------------------|---------|---------|----------|----------|-----------|---------|-----------|----------|-----------|---------|------|------|--|
| Course    | CO1: | Expla   | in the                                                                                                            | diode   | charac  | teristic | cs and   | their e   | ffects, | applicat  | tions.   |           |         |      |      |  |
| Outcomes: | CO2: | Illusti | rate th                                                                                                           | ne swit | ching   | charact  | teristic | s and $g$ | gate co | ntrol re  | quirem   | ent of ti | ansisto | r    |      |  |
|           | CO3: | Class   | ify the                                                                                                           | types   | of thyr | istor o  | peratio  | on, gat   | e chara | acteristi | cs and a | applicat  | ions    |      |      |  |
|           | CO4: | Desig   | gn the thyristor controlled Rectifiers                                                                            |         |         |          |          |           |         |           |          |           |         |      |      |  |
|           | CO5: | Analy   | gn the thyristor controlled Rectifiers<br>yse the operation of single phase and 3 phase converter and controllers |         |         |          |          |           |         |           |          |           |         |      |      |  |
| Mapping   | PO1  | PO2     | PO3                                                                                                               | PO4     | PO5     | PO6      | PO7      | PO8       | PO9     | PO10      | PO11     | PO12      | PSO1    | PSO2 | PSO3 |  |
| CO1       | 2    | -       | -                                                                                                                 | -       | -       | -        | -        | -         | -       | -         | -        | 3         | 2       | -    | 2    |  |
| CO2       | 2    | -       | -                                                                                                                 | -       | -       | -        | -        | -         | -       | -         | -        | 2         | 2       | -    | 2    |  |
| CO3       | 2    | 2       | -                                                                                                                 | -       | -       | -        | -        | -         | -       | -         | -        | -         | 2       | -    | 3    |  |
| CO4       | 2    | 3       | 3                                                                                                                 | -       | -       | -        | -        | -         | -       | -         | -        | -         | 2       | -    | 2    |  |
| CO5       | 2    | 3       | -                                                                                                                 | -       | -       | -        | -        | -         | -       | -         | -        | -         | 2       | -    | 3    |  |

|           |      |        |                                                                                                                                                                       | Sub       | ject: S | SIGNA    | ALS AN  | ND SY    | TEMS     | -15EE                 | 54        |           |           |        |      |  |
|-----------|------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------|----------|---------|----------|----------|-----------------------|-----------|-----------|-----------|--------|------|--|
| Course    | CO1: | Classi | fy signa                                                                                                                                                              | als, rela | te betw | veen ele | ementa  | ry signa | als and  | identify <sup>-</sup> | the prop  | erties of | system    |        |      |  |
| Outcomes: | CO2: | Solve  | convol                                                                                                                                                                | ution o   | peratio | n on co  | ntinuo  | us and   | discrete | e time sig            | gnals and | d realize | LTI Syste | m by   |      |  |
|           |      | differ | ential a                                                                                                                                                              | nd diffe  | erence  | Equatic  | ons and | demor    | strate   | them as               | block dia | agram re  | presenta  | ation. |      |  |
|           | CO3: | Explai | n the concept, applications and identify the properties of CT and DT Fourier Transform.                                                                               |           |         |          |         |          |          |                       |           |           |           |        |      |  |
|           | CO4: | Analy  | in the concept, applications and identify the properties of CT and DT Fourier Transform.<br>rze the concept, applications and identify the properties of Z transform. |           |         |          |         |          |          |                       |           |           |           |        |      |  |
| Mapping   | PO1  | PO2    | PO3                                                                                                                                                                   | PO4       | PO5     | PO6      | PO7     | PO8      | PO9      | PO10                  | PO11      | PO12      | PSO1      | PSO2   | PSO3 |  |
| CO1       | 2    | 3      | -                                                                                                                                                                     | -         | -       | -        | -       | -        | -        | -                     | -         | -         | 2         | 2      | -    |  |
| CO2       | 2    | 3      | -                                                                                                                                                                     | -         | -       | -        | -       | -        | -        | -                     | -         | -         | 2         | 3      | -    |  |
| CO3       | 3    | 3      | -                                                                                                                                                                     | 2         | 2       | -        | -       | -        | -        | -                     | -         | -         | 3         | 3      | -    |  |
| CO4       | 2    | 3      | -                                                                                                                                                                     | -         | 2       | -        | -       | -        | -        | -                     | -         | -         | 2         | 2      | -    |  |

|           |      | Subject: INTRODUCTION TO NUCLEAR POWER -15EE551                                                           |
|-----------|------|-----------------------------------------------------------------------------------------------------------|
| Course    | CO1: | Describe the fission process in nuclear materials, basic components of nuclear reactors, types of nuclear |
| Outcomes: |      | reactors and their working.                                                                               |
|           | CO2: | Classify different types of coolants, their features, and cooling of reactors                             |
|           | CO3: | Explain loss of cooling accidents in different reactors.                                                  |
|           | CO4: | Explain postulated severe accidents in reactors and cooling of reactor during removal of spent fuel.      |
|           | •    |                                                                                                           |

|         | CO5: | Descr<br>future | ibe the<br>e. | metho | ds of co | ooling a | nd disp | osing t | he nucl | ear wast | e and pr | ospect o | f fusion | energy ir | n the |
|---------|------|-----------------|---------------|-------|----------|----------|---------|---------|---------|----------|----------|----------|----------|-----------|-------|
| Mapping | PO1  | PO2             | PO3           | PO4   | PO5      | PO6      | PO7     | PO8     | PO9     | PO10     | PO11     | PO12     | PSO1     | PSO2      | PSO3  |
| CO1     | 2    | -               | -             | -     | -        | -        | 2       | -       | -       | -        | -        | -        | 2        | -         | -     |
| CO2     | 2    | -               | -             | -     | -        | -        | 2       | -       | -       | -        | -        | -        | 2        | -         | -     |
| CO3     | 2    | -               | -             | -     | -        | -        | 2       | -       | -       | -        | -        | -        | 2        | -         | -     |
| CO4     | 2    | -               | -             | -     | -        | 2        | 2       | -       | -       | -        | -        | -        | 2        | -         | -     |
| CO5     | 2    | -               | -             | -     | -        | 2        | 2       | -       | -       | -        | -        | -        | 2        | -         | -     |

|           |      |       | S                                                  | ubject   | Elec    | trical l | Engine  | ering N  | Materia   | uls - 15E | EE552     |            |          |           |       |
|-----------|------|-------|----------------------------------------------------|----------|---------|----------|---------|----------|-----------|-----------|-----------|------------|----------|-----------|-------|
| Course    | CO1: | Expla | in elec                                            | trical a | and ele | ectroni  | cs mat  | erials,  | their ir  | nportar   | ice, clas | sificatio  | n and o  | peratio   | nal   |
| Outcomes: |      | requi | remen                                              | t        |         |          |         |          |           |           |           |            |          |           |       |
|           | CO2: | Expla | in con                                             | ductin   | g mate  | rials,di | electri | c mate   | erials,ir | nsulatin  | g mater   | ials,mag   | gnetic m | aterials  | used  |
|           |      | in en | gineeri                                            | ing, the | eir pro | perties  | and c   | lassific | ation.    |           |           |            |          |           |       |
|           | CO3: | Expla | in the                                             | pheno    | menoi   | n super  | condu   | ctivity, | , super   | conduc    | ting ma   | iterials a | and thei | r applica | ation |
|           |      | in en | gineering.                                         |          |         |          |         |          |           |           |           |            |          |           |       |
|           | CO4: | Expla | n the plastic and its properties and applications. |          |         |          |         |          |           |           |           |            |          |           |       |
|           | CO5: | Expla | in mat                                             | erials   | used fo | or Opto  | electi  | ronic d  | evices.   |           |           |            |          |           |       |
| Mapping   | PO1  | PO2   | PO3                                                | PO4      | PO5     | PO6      | PO7     | PO8      | PO9       | PO10      | PO11      | PO12       | PSO1     | PSO2      | PSO3  |
| CO1       | 3    | -     | -                                                  | -        | -       | -        | -       | -        | -         | -         | -         | 2          | 3        | -         | -     |
| CO2       | 3    | 2     | -                                                  | -        | -       | -        | -       | -        | -         | -         | -         | 2          | 3        | -         | -     |
| CO3       | 3    | 2     | -                                                  | -        | -       | -        | -       | -        | -         | -         | -         | 2          | 3        | -         | -     |
| CO4       | 3    | 2     | -                                                  | -        | -       | -        | -       | -        | -         | -         | -         | 2          | 3        | -         | -     |
| CO5       | 3    | 2     | -                                                  | -        | -       | -        | -       | -        | -         | -         | -         | 2          | 3        | -         | -     |

|           |      |        |                                                                                                                                                          | Sul      | bject:   | Estim   | ating a | nd Cos   | ting -  | 15EE55   | 3        |          |            |            |        |  |
|-----------|------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|---------|---------|----------|---------|----------|----------|----------|------------|------------|--------|--|
| Course    | CO1: | Expla  | in the                                                                                                                                                   | propos   | se Estir | mating  | and co  | osting   | and lea | rn term  | ns assoc | iated w  | ith it - N | larket s   | urvey, |  |
| Outcomes: |      | Estim  | hates, p                                                                                                                                                 | ourcha   | se enq   | uiries, | Tende   | rs, con  | nparati | ve state | ements,  | payme    | nt of Bill | ls, IE Act | and    |  |
|           |      | IE Ru  | les.                                                                                                                                                     |          |          |         |         |          |         |          |          |          |            |            |        |  |
|           | CO2: | Expla  | in Dist                                                                                                                                                  | ributio  | n of Ei  | nergy i | n a bui | lding, t | types a | nd wiri  | ng meth  | nods, ca | bles for   | wiring,    |        |  |
|           |      | acces  | sories                                                                                                                                                   | and Fi   | ttings   | used, F | uses-1  | ypes a   | nd neo  | cessity. |          |          |            |            |        |  |
|           | CO3: | Expla  | in type                                                                                                                                                  | es of se | ervice r | mains a | and pre | eparati  | on of e | estimati | on for s | ervice n | nains an   | nd what    | are    |  |
|           |      | powe   | ver circuits and preparation of estimation for power wiring<br>cover terms associated with OH transmission and Distributiuon, preparatiion of Estimation |          |          |         |         |          |         |          |          |          |            |            |        |  |
|           | CO4: | Disco  | over terms associated with OH transmission and Distributiuon, preparatiion of Estimation                                                                 |          |          |         |         |          |         |          |          |          |            |            |        |  |
|           |      | for Tr | cover terms associated with OH transmission and Distributiuon, preparation of Estimation<br>Transmission and Distribution Lines.                         |          |          |         |         |          |         |          |          |          |            |            |        |  |
|           | CO5: | Expla  | in the                                                                                                                                                   | functio  | ons of v | various | s equip | ments    | used i  | n a S/S, | drawin   | g single | line dia   | grams a    | nd     |  |
|           |      | Estim  | ation of                                                                                                                                                 | of Mat   | erials r | equire  | d for a | Subst    | ation.  |          |          |          |            |            |        |  |
| Mapping   | PO1  | PO2    | PO3                                                                                                                                                      | PO4      | PO5      | PO6     | PO7     | PO8      | PO9     | PO10     | PO11     | PO12     | PSO1       | PSO2       | PSO3   |  |
| CO1       | 3    | 2      | -                                                                                                                                                        | -        | -        | -       | -       | -        | -       | -        | 3        | 2        | -          | -          | 2      |  |
| CO2       | 3    | 2      | -                                                                                                                                                        | -        | -        | -       | -       | -        | -       | -        | 3        | 2        | -          | -          | 2      |  |
| CO3       | 3    | 2      | -                                                                                                                                                        | -        | -        | -       | -       | -        | -       | -        | 3        | 2        | -          | -          | 2      |  |
| CO4       | 3    | 2      | -                                                                                                                                                        | -        | -        | -       | -       | -        | -       | -        | 3        | 2        | -          | -          | 2      |  |
| CO5       | 3    | 2      | -                                                                                                                                                        | -        | -        | -       | -       | -        | -       | -        | 3        | 2        | -          | -          | 2      |  |

|      | Subject: Special Electrical Machines - 15EE554                                |
|------|-------------------------------------------------------------------------------|
| C01: | Explain the performance and control of stepper motors, and their applications |

| Course<br>Outcomes: | CO2: | Expla<br>brush | in theo<br>less D                                                                                                                                         | ory of o<br>.C. mo | operati<br>tors. | ion and | d contr | ol of s | witche | d reluct | ance m   | otor and | d perma | nent ma | agnet |  |
|---------------------|------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------------|---------|---------|---------|--------|----------|----------|----------|---------|---------|-------|--|
|                     | CO3: | Expla          | in theo                                                                                                                                                   | ory of o           | operati          | ion and | d contr | ol of p | erman  | ent mag  | gnet syr | chrono   | us moto | ors and |       |  |
|                     |      | Synch          | nronou                                                                                                                                                    | is reluc           | tance            | motor   |         |         |        |          |          |          |         |         |       |  |
|                     | CO4: | Expla          | lain operation of single phase special machines and servo motors.<br>Jain operation of linear electrical machine and permanent magnet axial flux machines |                    |                  |         |         |         |        |          |          |          |         |         |       |  |
|                     | CO5: | Expla          | blain operation of linear electrical machine and permanent magnet axial flux machines                                                                     |                    |                  |         |         |         |        |          |          |          |         |         |       |  |
| Mapping             | PO1  | PO2            | in operation of linear electrical machine and permanent magnet axial flux machinesPO3PO4PO5PO6PO7PO8PO9PO10PO11PO12PSO1PSO2PSO3                           |                    |                  |         |         |         |        |          |          |          |         |         |       |  |
| CO1                 | 3    | 3              | -                                                                                                                                                         | -                  | -                | -       | -       | -       | -      | -        | -        | 1        | 2       | -       | -     |  |
| CO2                 | 3    | 3              | -                                                                                                                                                         | -                  | -                | -       | -       | -       | -      | -        | -        | 1        | 2       | -       | -     |  |
| CO3                 | 3    | 3              | -                                                                                                                                                         | -                  | -                | -       | -       | -       | -      | -        | -        | 1        | 2       | -       | -     |  |
| CO4                 | 3    | 3              | -                                                                                                                                                         | -                  | -                | -       | -       | -       | -      | -        | -        | 1        | 2       | -       | -     |  |
| CO5                 | 3    | 3              | -                                                                                                                                                         | -                  | -                | -       | -       | -       | -      | -        | -        | 1        | 2       | -       | -     |  |

|           |      |       | Su                                                                                              | bject:  | Electi  | ronic C  | lommu   | nicatio  | on syste | ems - 15  | 5EE561   |          |         |          |       |  |
|-----------|------|-------|-------------------------------------------------------------------------------------------------|---------|---------|----------|---------|----------|----------|-----------|----------|----------|---------|----------|-------|--|
| Course    | CO1: | Expla | in com                                                                                          | munic   | ation s | system   | s and i | ts tern  | ninolog  | gies & ex | kplain n | oise, co | mputati | on of no | oise  |  |
| Outcomes: |      | level | in com                                                                                          | munic   | ation s | system   | s and a | also de  | scribe   | the the   | ory of a | mplitud  | e modu  | lation   |       |  |
|           |      | techr | niques                                                                                          |         |         |          |         |          |          |           |          |          |         |          |       |  |
|           | CO2: | Descr | ribe th                                                                                         | e theo  | ry of a | ingle, p | oulse a | nd digi  | tal mo   | dulatior  | n techni | ques     |         |          |       |  |
|           | CO3: | Expla | in prin                                                                                         | ciples  | of radi | o com    | munica  | ation, t | ransm    | itters ar | nd recei | vers &   | underst | and the  | basic |  |
|           |      | of TV | syster                                                                                          | n and   | proces  | sing of  | trans   | missio   | n and r  | eceptio   | n        |          |         |          |       |  |
|           | CO4: | Expla | ain basic principles of radar systems and also multiplexing of broadband communication ems.     |         |         |          |         |          |          |           |          |          |         |          |       |  |
|           |      | syste | ems.                                                                                            |         |         |          |         |          |          |           |          |          |         |          |       |  |
|           | CO5: | Expla | ems.<br>ain basics of fiber optic technology and also understand information theory, coding and |         |         |          |         |          |          |           |          |          |         |          |       |  |
|           |      | data  | comm                                                                                            | unicati | on      |          |         |          |          |           |          |          |         | -        |       |  |
| Mapping   | PO1  | PO2   | PO3                                                                                             | PO4     | PO5     | PO6      | PO7     | PO8      | PO9      | PO10      | PO11     | PO12     | PSO1    | PSO2     | PSO3  |  |
| CO1       | 3    | 2     | -                                                                                               | -       | -       | -        | -       | -        | -        | -         | -        | -        | 2       | -        | -     |  |
| CO2       | 3    | 2     | -                                                                                               | -       | -       | -        | -       | -        | -        | -         | -        | -        | 2       | -        | -     |  |
| CO3       | 3    | 2     | -                                                                                               | -       | -       | -        | -       | -        | -        | -         | -        | -        | 2       | -        | -     |  |
| CO4       | 3    | 3     | -                                                                                               | -       | -       | -        | -       | -        | -        | -         | -        | -        | 2       | -        | -     |  |
| CO5       | 3    | 2     | -                                                                                               | -       | -       | -        | -       | -        | -        | -         | -        | -        | 2       | -        | -     |  |

|           |      |       | S                                                                                                                                                                   | ubject  | : Prog   | gramm    | able Lo | ogic co | ontrolle | ers - 15E | EE562     |           |           |          |       |  |
|-----------|------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------|----------|---------|---------|----------|-----------|-----------|-----------|-----------|----------|-------|--|
| Course    | CO1: | Discu | ss hist                                                                                                                                                             | ory of  | PLC, its | s seque  | ence of | fopera  | ition, a | dvanta    | ges and   | disadva   | ntages,   | main pa  | arts  |  |
| Outcomes: |      | and t | heir fu                                                                                                                                                             | nction  | S        |          |         |         |          |           |           |           |           |          |       |  |
|           | CO2: | Desci | ribe th                                                                                                                                                             | e hard  | ware c   | ompor    | nents o | of PLC: | I/O mo   | dules, (  | CPU, me   | emory d   | evices,   | other su | pport |  |
|           |      | devic | es,ope                                                                                                                                                              | rating  | mode     | s and P  | LC pro  | gramn   | ning.    |           |           |           |           |          |       |  |
|           | CO3: | Desci | ribe fie                                                                                                                                                            | ld dev  | ices Re  | lays, C  | ontact  | ors, M  | otor St  | tarters,  | Switche   | s, Senso  | ors, Out  | put Con  | trol  |  |
|           |      | Devic | vices,Seal-In Circuits, and Latching Relays commonly used with I/O module.<br>Invert relay schematics and narrative descriptions into PLC ladder logic programs and |         |          |          |         |         |          |           |           |           |           |          |       |  |
|           | CO4: | Conv  | nvert relay schematics and narrative descriptions into PLC ladder logic programs and                                                                                |         |          |          |         |         |          |           |           |           |           |          |       |  |
|           |      | analy | nvert relay schematics and narrative descriptions into PLC ladder logic programs and alyze PLC timer and counter ladder logic programs                              |         |          |          |         |         |          |           |           |           |           |          |       |  |
|           | CO5: | Desci | ribe th                                                                                                                                                             | e oper  | ation c  | of diffe | rent pr | ogram   | contro   | ol instru | ictions a | and the   | executio  | on of da | ta    |  |
|           |      | trans | fer ins                                                                                                                                                             | tructio | ns, dat  | a com    | pare ir | struct  | ions ar  | nd the b  | asic ope  | eration o | of PLC c  | osed-lo  | ор    |  |
|           |      | contr | ol syst                                                                                                                                                             | em.     |          |          |         |         |          |           |           |           |           |          |       |  |
|           | CO6  | Desci | ribe th                                                                                                                                                             | e oper  | ation c  | of mech  | nanical | seque   | ncers,   | bit and   | word sl   | nift regi | sters, pr | ocesses  | and   |  |
|           |      | struc | ture of                                                                                                                                                             | trol sy | /stems   | and co   | ommur   | nicatio | n betw   | een the   | proces    | ses.      |           |          |       |  |
| Mapping   | PO1  | PO2   | PO3                                                                                                                                                                 | PO4     | PO5      | PO6      | PO7     | PO8     | PO9      | PO10      | PO11      | PO12      | PSO1      | PSO2     | PSO3  |  |
| CO1       | 2    | -     | -                                                                                                                                                                   | -       | -        | -        | -       | -       | -        | -         | -         |           | 3         | -        | -     |  |

| CO2 | 3 | 2 | - | - | - | - | - | - | - | - | - |   | 3 | - | - |
|-----|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| CO3 | 3 | 2 | - | - | - | - | - | - | - | - | - | 2 | 3 | - | - |
| CO4 | 3 | 2 | 3 | - | - | - | - | - | - | - | - | 3 | 3 | - | - |
| CO5 | 3 | - | 3 | - | - | - | - | - | - | - | - | 3 | 3 | - | - |
| CO6 | 3 | 2 | - | - | - | - | - | - | - | - | - | 2 | 3 | - | - |

|           |      |       | Sul                                                                                                                                                      | oject:   | RENE   | WAB     | LE EN   | ERGY    | SYST   | TEMS-1   | 5EE563   | 6        |         |         |       |  |
|-----------|------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------|---------|---------|---------|--------|----------|----------|----------|---------|---------|-------|--|
| Course    | CO1: | Expla | in the                                                                                                                                                   | perfor   | mance  | and co  | ontrol  | of step | per m  | otors, a | nd their | applica  | tions   |         |       |  |
| Outcomes: | CO2: | Expla | in theo                                                                                                                                                  | ory of o | operat | ion and | d contr | ol of s | witche | d reluct | ance m   | otor and | d perma | nent ma | agnet |  |
|           |      | brush | nless D                                                                                                                                                  | .C. mo   | tors.  |         |         |         |        |          |          |          |         |         |       |  |
|           | CO3: | Expla | in theo                                                                                                                                                  | ory of o | operat | ion and | d contr | ol of p | erman  | ent mag  | gnet syr | nchrono  | us moto | ors and |       |  |
|           |      | Syncł | nronou                                                                                                                                                   | ıs reluc | tance  | motor   |         |         |        |          |          |          |         |         |       |  |
|           | CO4: | Expla | ain operation of single phase special machines and servo motors.<br>ain operation of linear electrical machine and permanent magnet axial flux machines. |          |        |         |         |         |        |          |          |          |         |         |       |  |
|           | CO5: | Expla | lain operation of linear electrical machine and permanent magnet axial flux machines                                                                     |          |        |         |         |         |        |          |          |          |         |         |       |  |
|           | CO6  |       | plain operation of linear electrical machine and permanent magnet axial flux machines                                                                    |          |        |         |         |         |        |          |          |          |         |         |       |  |
| Mapping   | PO1  | PO2   | PO3                                                                                                                                                      | PO4      | PO5    | PO6     | PO7     | PO8     | PO9    | PO10     | PO11     | PO12     | PSO1    | PSO2    | PSO3  |  |
| CO1       | 2    | -     | -                                                                                                                                                        | -        | -      | 2       | 3       | -       | -      | -        | -        | 2        | 2       | -       | 3     |  |
| CO2       | 2    | -     | -                                                                                                                                                        | -        | -      | 2       | 3       | -       | -      | -        | -        | 2        | 2       | -       | 3     |  |
| CO3       | 2    | 2     | -                                                                                                                                                        | -        | -      | 2       | 3       | -       | -      | -        | -        | 2        | 2       | -       | 2     |  |
| CO4       | 2    | 2     | -                                                                                                                                                        | -        | -      | 2       | 3       | -       | -      | -        | -        | 2        | 2       | -       | 2     |  |
| CO5       | 2    | -     | -                                                                                                                                                        | -        | -      | 2       | 3       | -       | -      | -        | -        | 2        | 2       | -       | 2     |  |
| CO6       | 2    | -     | -                                                                                                                                                        | -        | -      | 2       | 3       | -       | -      | -        | -        | 2        | 2       | -       | 2     |  |

|           |      |        |                                                                                                                                                                          | Sub     | ject: 1 | Busine   | ss Con   | nmunic   | ation - | 15EE5     | 64         |           |          |          |      |  |
|-----------|------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|----------|----------|----------|---------|-----------|------------|-----------|----------|----------|------|--|
| Course    | CO1: | Apply  | / busin                                                                                                                                                                  | ess co  | mmun    | ication  | strate   | gies ar  | nd prin | ciples to | o prepai   | re effect | tive com | nmunica  | tion |  |
| Outcomes: |      | for d  | omesti                                                                                                                                                                   | c and i | nterna  | tional   | busine   | ess situ | ations  |           |            |           |          |          |      |  |
|           | CO2: | Utiliz | e anal                                                                                                                                                                   | tical a | nd pro  | blem s   | solving  | skills a | approp  | riate to  | busines    | ss comm   | nunicati | on.      |      |  |
|           | CO3: | Parti  | cipate                                                                                                                                                                   | in tean | n activ | ities th | at lead  | to the   | e deve  | lopment   | t of colla | aborativ  | ve work  | skills.  |      |  |
|           | CO4: | Selec  | t appr                                                                                                                                                                   | opriate | e orgar | nizatior | nal forr | nats ai  | nd cha  | nnels us  | ed in de   | evelopir  | ng and p | resentii | ng   |  |
|           |      | busin  | iess me                                                                                                                                                                  | essage  | s.      |          |          |          |         |           |            |           |          |          | C    |  |
|           | CO5: | Com    | npose and revise accurate business documents using computer technology.                                                                                                  |         |         |          |          |          |         |           |            |           |          |          |      |  |
|           | CO6  | Com    | npose and revise accurate business documents using computer technology.<br>nmunicate via electronic mail, Internet, and other technologies and deliver an effective oral |         |         |          |          |          |         |           |            |           |          |          |      |  |
|           |      | busin  | less pr                                                                                                                                                                  | esenta  | tion.   |          |          |          |         |           | C          |           |          |          |      |  |
| Mapping   | PO1  | PO2    | PO3                                                                                                                                                                      | PO4     | PO5     | PO6      | PO7      | PO8      | PO9     | PO10      | PO11       | PO12      | PSO1     | PSO2     | PSO3 |  |
| CO1       | 3    | -      | -                                                                                                                                                                        | -       | -       | -        | -        | -        | -       | 3         | 2          | 2         | -        | -        | -    |  |
| CO2       | 3    | 2      | -                                                                                                                                                                        | 2       | -       | -        | -        | -        | -       | 3         | 2          | 2         | -        | -        | -    |  |
| CO3       | -    | -      | -                                                                                                                                                                        | -       | -       | -        | -        | 2        | 3       | -         | -          | 2         | -        | -        | -    |  |
| CO4       | 3    | 2      | -                                                                                                                                                                        | -       | -       | -        | -        | -        | -       | 2         | -          | 3         | -        | -        | -    |  |
| CO5       | 3    | -      | -                                                                                                                                                                        | -       | 3       | -        | -        | -        | -       | -         | -          | 3         | -        | -        | -    |  |
| CO6       | -    | -      | -                                                                                                                                                                        | -       | -       | -        | -        | -        | -       | 3         | -          | 3         | -        | -        | -    |  |

|           |      |       |                                                                                    | Subje   | et: Ml   | CROC    | ONTE     | ROLLE    | R LA      | B -15EE    | EL57     |           |            |           |      |
|-----------|------|-------|------------------------------------------------------------------------------------|---------|----------|---------|----------|----------|-----------|------------|----------|-----------|------------|-----------|------|
| Course    | CO1: | Build | assemb                                                                             | ly lang | uage pr  | ograms  | s for da | ta trans | sfer, ari | thmetic,   | Boolear  | and log   | ical instr | uctions a | and  |
| Outcomes: |      | code  | convers                                                                            | sions.  |          |         |          |          |           |            |          |           |            |           |      |
|           | CO2: | Apply | ALP su                                                                             | broutin | es for g | generat | ion of c | lelays,  | counter   | rs, config | guration | of SFRs f | or serial  |           |      |
|           |      | comm  | nunicati                                                                           | ion and | timers   |         |          |          |           |            |          |           |            |           |      |
|           | CO3: | Demo  | onstrate interfacing of LCD, stepper motor and dc motor for controlling the speed. |         |          |         |          |          |           |            |          |           |            |           |      |
|           | CO4: | Devel | elop different waveforms using DAC interface.                                      |         |          |         |          |          |           |            |          |           |            |           |      |
| Mapping   | PO1  | PO2   | PO3                                                                                | PO4     | PO5      | PO6     | PO7      | PO8      | PO9       | PO10       | PO11     | PO12      | PSO1       | PSO2      | PSO3 |
| CO1       | 3    | 3     | 2                                                                                  | -       | 3        | -       | -        | -        | 3         | 3          | 2        | -         | 3          | 3         | 2    |
| CO2       | 3    | 3     | 2                                                                                  | -       | 3        | -       | -        | -        | 3         | 3          | 2        | -         | 3          | 3         | 2    |
| CO3       | 3    | 3     | 2                                                                                  | -       | 3        | -       | -        | -        | 2         | 3          | 2        | -         | 3          | 2         | 2    |
| CO4       | 3    | 3     | 2                                                                                  | -       | 3        | -       | -        | -        | 3         | 3          | 2        | -         | 3          | 3         | 2    |

|           |      |         |           | Subjec                                                                                           | t: PO     | WER I     | ELECI    | roni     | CS LA    | B-15El    | EL58      |           |            |           |         |
|-----------|------|---------|-----------|--------------------------------------------------------------------------------------------------|-----------|-----------|----------|----------|----------|-----------|-----------|-----------|------------|-----------|---------|
| Course    | CO1: | Discu   | iss the j | perform                                                                                          | nance c   | of variou | us semi  | conduc   | tor dev  | ices with | n the hel | p of thei | r static c | haracteri | istics. |
| Outcomes: | CO2: | Const   | ruct th   | e Trigge                                                                                         | er circui | t for SC  | R by di  | fferent  | metho    | ds.       |           |           |            |           |         |
|           | CO3: | Demo    | nstrate   | e the sir                                                                                        | ngle ph   | ase con   | trolled  | full way | ve recti | fier and  | AC volt   | tage cont | troller w  | ith R and | RL      |
|           |      | loads.  |           | istrate the single phase controlled full wave rectiner and AC – voltage controller with R and RL |           |           |          |          |          |           |           |           |            |           |         |
|           | CO4: | Illustr | ate the   | speed                                                                                            | contro    | of dc n   | notor, ı | universa | al moto  | r and ste | epper mo  | otors.    |            |           |         |
| Mapping   | PO1  | PO2     | PO3       | PO4                                                                                              | PO5       | PO6       | PO7      | PO8      | PO9      | PO10      | PO11      | PO12      | PSO1       | PSO2      | PSO3    |
| CO1       | 2    | 2       | -         | -                                                                                                | -         | -         | -        | -        | 2        | 3         | -         | 2         | 2          | -         | 3       |
| CO2       | 2    | 2       | -         | -                                                                                                | -         | -         | -        | -        | 3        | 3         | -         | 3         | 2          | -         | 3       |
| CO3       | 2    | 2       | -         | -                                                                                                | -         | -         | -        | -        | 2        | 3         | -         | 2         | 2          | -         | 3       |
| CO4       | 3    | 3       | -         | 2                                                                                                | -         | -         | -        | -        | 2        | 3         | 2         | 2         | 3          | -         | 3       |

|           |       |            |          | Su                                                                                                                                        | bject:        | CON     | TROL    | SYST    | EMS -        | 15EE61       | l         |          |          |          |        |  |
|-----------|-------|------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------|---------|---------|--------------|--------------|-----------|----------|----------|----------|--------|--|
| Course    | CO1:  | Expla      | in the   | necess                                                                                                                                    | ity of f      | feedba  | ck and  | types   | of feed      | dback co     | ontrol sy | ystems a | and to l | Evaluate | e the  |  |
| Outcomes: |       | trans      | fer fun  | ction o                                                                                                                                   | of a lin      | ear tim | ne inva | riant s | ystem.       | (Electri     | cal , me  | chanica  | l system | n,servon | notors |  |
|           | ~ ~ ~ | and g      | gear tra | ains)                                                                                                                                     |               |         |         |         |              |              |           |          |          |          |        |  |
|           | CO2:  | Apply      | / block  | diagra                                                                                                                                    | im mai        | nipulat | ion an  | d signa | al flow      | graph n      | nethods   | to obta  | in trans | fer fund | tion   |  |
|           |       | of sys     | stems.   |                                                                                                                                           |               |         |         |         |              |              |           |          |          |          |        |  |
|           | CO3:  | Desci      | ribe th  | be the Standard test signals, time response of first and second order of simple control<br>s. steady state errors and error constants     |               |         |         |         |              |              |           |          |          |          |        |  |
|           |       | syste      | ms, ste  | be the Standard test signals, time response of first and second order of simple control<br>ns, steady state errors and error constants.   |               |         |         |         |              |              |           |          |          |          |        |  |
|           | CO4:  | Evalu      | ate the  | is, steady state errors and error constants.<br>te the stability of linear time invariant systems by using Routh - Hurwitz criterion & to |               |         |         |         |              |              |           |          |          |          |        |  |
|           |       | analy      | ze the   | stabil                                                                                                                                    | ,<br>ity usir | ng Roo  | t locus | , Bode  | ,<br>plots a | ,<br>and Nyg | uist plo  | ts       |          |          |        |  |
|           | CO5:  | ,<br>Desig | n of Pl  | D, PI &                                                                                                                                   | ,<br>PID co   | ntrolle | rs.     | ,       | •            | , ,          | •         |          |          |          |        |  |
| Mapping   | PO1   | PO2        | PO3      | PO4                                                                                                                                       | PO5           | PO6     | PO7     | PO8     | PO9          | PO10         | PO11      | PO12     | PSO1     | PSO2     | PSO3   |  |
| CO1       | 3     | 3          | -        | -                                                                                                                                         | 2             | -       | -       | -       | -            | -            | -         | 2        | 3        | 2        | -      |  |
| CO2       | 3     | -          | -        | -                                                                                                                                         | -             | -       | -       | -       | -            | -            | -         | 2        | 3        | -        | -      |  |
| CO3       | 2     | 3          | -        | -                                                                                                                                         | -             | -       | -       | -       | -            | -            | -         | -        | 2        | -        | -      |  |
| CO4       | 3     | 3          | 2        | -                                                                                                                                         | 3             | -       | -       | -       | -            | -            | -         | 2        | 3        | 3        | -      |  |
| CO5       | 2     | 2          | 3        | -                                                                                                                                         | -             | -       | -       | -       | -            | -            | -         | 2        | 2        | -        | -      |  |

|      | Subject: POWER SYSTEM ANALYSIS 1- 15EE62                          |
|------|-------------------------------------------------------------------|
| CO1: | Illustrate a single line diagram of the power system in per unit. |

| Course    | CO2: | Ident | ify and                                                                                | l analy | se diff | erent t  | ypes o  | f faults | in pov  | wer syst | em.       |          |           |         |        |  |
|-----------|------|-------|----------------------------------------------------------------------------------------|---------|---------|----------|---------|----------|---------|----------|-----------|----------|-----------|---------|--------|--|
| Outcomes: | CO3: | Exam  | ine un                                                                                 | balanc  | ed pha  | asors ir | nto syn | nmetri   | cal cor | nponen   | ts for fa | ult anal | ysis of p | ower sy | vstem. |  |
|           | CO4: | Evalu | uate power system stability using graphical method by identifying the concept of power |         |         |          |         |          |         |          |           |          |           |         |        |  |
|           |      | syste | tem stability.                                                                         |         |         |          |         |          |         |          |           |          |           |         |        |  |
| Mapping   | PO1  | PO2   | m stability.<br>PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3              |         |         |          |         |          |         |          |           |          |           |         |        |  |
| CO1       | 3    | 3     | -                                                                                      | -       | -       | -        | -       | -        | -       | -        | -         | -        | 3         | -       | -      |  |
| CO2       | 3    | 3     | -                                                                                      | -       | -       | -        | -       | -        | -       | -        | -         | -        | 2         | -       | -      |  |
| CO3       | 2    | 3     | -                                                                                      | 2       | -       | -        | -       | -        | -       | -        | -         | 1        | 2         | -       | -      |  |
| CO4       | 2    | 3     | -                                                                                      | 2       | -       | -        | -       | -        | -       | -        | -         | 1        | 3         | 2       | -      |  |

|           |      |        | S                                                                                                                                                                           | ubject   | : DIG     | ITAL S  | SIGNA    | L PRO    | OCESS   | SING -1  | 5EE63    |           |          |           |      |
|-----------|------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|---------|----------|----------|---------|----------|----------|-----------|----------|-----------|------|
| Course    | CO1: | Class  | ify the                                                                                                                                                                     | DFT of   | fvario    | us sign | als usir | ng its p | ropert  | ies and  | by its d | ifferent  | method   | ls.       |      |
| Outcomes: | CO2: | Apply  | / fast a                                                                                                                                                                    | and eff  | icient    | algorit | hms to   | comp     | ute DF  | T and ID | OFT of a | given so  | equence  | 2.        |      |
|           | CO3: | Make   | e use o                                                                                                                                                                     | f Impu   | lse inv   | ariant  | techni   | que an   | d Bilin | ear tran | sformat  | tion to c | lesign a | nalog III | र    |
|           |      | filter | s and t                                                                                                                                                                     | the dig  | gital IIF | ₹.      |          |          |         |          |          |           |          |           |      |
|           | CO4: | Utilis | e window techniques and frequency sampling technique to design FIR filters.                                                                                                 |          |           |         |          |          |         |          |          |           |          |           |      |
|           | CO5: | Analy  | se window techniques and frequency sampling technique to design FIR filters.<br>lyze the IIR , FIR & Linear phase FIR filters by direct form-1, direct form –II,Cascade and |          |           |         |          |          |         |          |          |           |          |           |      |
|           |      | Paral  | lel rea                                                                                                                                                                     | lizatior | ıs,       |         |          |          | -       |          |          |           |          |           |      |
| Mapping   | PO1  | PO2    | PO3                                                                                                                                                                         | PO4      | PO5       | PO6     | PO7      | PO8      | PO9     | PO10     | PO11     | PO12      | PSO1     | PSO2      | PSO3 |
| CO1       | 2    | 3      | -                                                                                                                                                                           | -        | -         | -       | -        | -        | -       | -        | -        | -         | 2        | -         | -    |
| CO2       | 3    | 2      | 2                                                                                                                                                                           | -        | -         | -       | -        | -        | -       | -        | -        | -         | 3        | -         | -    |
| CO3       | 3    | 2      | -                                                                                                                                                                           | -        | -         | -       | -        | -        | -       | -        | -        | -         | 3        | -         | 2    |
| CO4       | 3    | 2      | -                                                                                                                                                                           | -        | -         | -       | -        | -        | -       | -        | -        | -         | 3        | -         | 2    |
| CO5       | 2    | 3      | 2                                                                                                                                                                           | -        | -         | -       | -        | -        | -       | -        | -        | -         | 2        | -         | 2    |

|           |      |        | Su                                                                                                                                                                                                          | bject:  | ELEC    | CTRIC    | AL M   | ACHIN    | <b>JE DE</b> | SIGN -1  | 5EE64     |          |          |         |      |
|-----------|------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|----------|--------|----------|--------------|----------|-----------|----------|----------|---------|------|
| Course    | CO1: | Judge  | e and s                                                                                                                                                                                                     | elect t | he eng  | ineerin  | ng mat | erials f | or the       | constru  | iction of | felectri | cal macl | nines   |      |
| Outcomes: | CO2: | Estim  | ate th                                                                                                                                                                                                      | e dime  | ensions | ofdc     | machir | ne arm   | ature        | with the | help of   | output   | equation | on and  |      |
|           |      | relati | onship                                                                                                                                                                                                      | betwo   | een va  | rious p  | arame  | ters.    |              |          |           |          |          |         |      |
|           | CO3: | deter  | mine t                                                                                                                                                                                                      | the din | nensio  | ns of fi | eld an | d comr   | nutato       | or       |           |          |          |         |      |
|           | CO4: | Estim  | ate th                                                                                                                                                                                                      | e dime  | ensions | oftra    | nsform | ner wit  | h the h      | elp of o | utput e   | quation  | and rel  | ationsh | ip   |
|           |      | betw   | veen various parameters.<br>rmine the dimensions of ac machine with the help of output equation and relationship                                                                                            |         |         |          |        |          |              |          |           |          |          |         |      |
|           | CO5: | Dete   | veen various parameters.<br>Irmine the dimensions of ac machine with the help of output equation and relationship<br>Veen various parameters.                                                               |         |         |          |        |          |              |          |           |          |          |         |      |
|           |      | betw   | ermine the dimensions of ac machine with the help of output equation and relationship veen various parameters.                                                                                              |         |         |          |        |          |              |          |           |          |          |         |      |
|           | CO6  | Desig  | rmine the dimensions of ac machine with the help of output equation and relationship<br>een various parameters.<br>In the field of synchronous machines define scr ,effect of scr and then estimate the air |         |         |          |        |          |              |          |           |          |          |         |      |
|           |      | gap le | ength                                                                                                                                                                                                       |         | -       |          |        |          |              |          |           |          |          |         |      |
| Mapping   | PO1  | PO2    | PO3                                                                                                                                                                                                         | PO4     | PO5     | PO6      | PO7    | PO8      | PO9          | PO10     | PO11      | PO12     | PSO1     | PSO2    | PSO3 |
| CO1       | 2    | 2      | -                                                                                                                                                                                                           | -       | -       | -        | -      | -        | -            | -        | -         | 2        | 2        | -       | 3    |
| CO2       | 2    | 2      | 3                                                                                                                                                                                                           | -       | -       | -        | -      | -        | -            | -        | -         | -        | 2        | -       | 3    |
| CO3       | 2    | 2      | 3                                                                                                                                                                                                           | -       | -       | -        | -      | -        | -            | -        | -         | -        | 2        | -       | 3    |
| CO4       | 2    | 2      | 3                                                                                                                                                                                                           | -       | -       | -        | -      | -        | -            | -        | -         | -        | 2        | -       | 3    |
| CO5       | 2    | 2      | 3                                                                                                                                                                                                           | 2       | -       | -        | -      | -        | -            | -        | -         | -        | 2        | -       | 3    |
| CO6       | 2    | 2      | 3                                                                                                                                                                                                           | 2       | -       | -        | -      | -        | -            | -        | -         | 2        | 2        | -       | 3    |

|           |      | Sub   | oject:   | COM      | PUTEF    | R AIDE   | ED ELI   | ECTRI     | CAL I     | ORAWI     | NG- 15    | EE651      |           |           |      |
|-----------|------|-------|----------|----------|----------|----------|----------|-----------|-----------|-----------|-----------|------------|-----------|-----------|------|
| Course    | CO1: | Make  | Use of   | f Auto C | CAD cor  | nmand    | s to dra | w the o   | compor    | ents of s | substatic | on like CT | , PT, SA, | CB, Isola | tor  |
| Outcomes: |      | etc   |          |          |          |          |          |           |           |           |           |            |           |           |      |
|           | CO2: | Devel | op the   | model o  | of diffe | rent typ | bes of D | C and A   | AC mac    | hine win  | dings us  | ing Auto   | CAD sof   | tware.    |      |
|           | CO3: | Mode  | l the va | arious p | arts an  | d their  | differei | nt view:  | s of trai | nsforme   | r using A | uto CAD    |           |           |      |
|           | CO4: | Build | the Mo   | del of v | various  | parts a  | nd thei  | r differe | ent viev  | vs of DC  | & AC ma   | ichine us  | ing Auto  | CAD.      |      |
| Mapping   | PO1  | PO2   | PO3      | PO4      | PO5      | PO6      | PO7      | PO8       | PO9       | PO10      | PO11      | PO12       | PSO1      | PSO2      | PSO3 |
| CO1       | 3    | -     | -        | -        | 3        | -        | I        | -         | I         | -         | -         | -          | 3         | 3         | -    |
| CO2       | 2    | 3     | 2        | -        | 3        | -        | I        | -         | I         | -         | -         | -          | 2         | 3         | -    |
| CO3       | 2    | 3     | 2        | -        | 3        | -        | I        | -         | I         | -         | -         | -          | 2         | 3         | -    |
| CO4       | 3    | 3     | 2        | -        | 3        | -        | -        | -         | -         | -         | -         | -          | 3         | 3         | -    |

|           |      |       | Subj                                                                                                                 | ect: A                                                                                      | DVA     | NCED    | POWI   | ER EL    | ECTR      | ONICS-    | 15EE65    | 52       |           |          |         |
|-----------|------|-------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------|---------|--------|----------|-----------|-----------|-----------|----------|-----------|----------|---------|
| Course    | CO1: | Expla | in the                                                                                                               | types                                                                                       | of swit | ching r | node r | egulat   | ors and   | d also di | iscuss th | ne techr | niques fo | or desig | n and   |
| Outcomes: |      | analy | sis of [                                                                                                             | DC DC                                                                                       | conver  | ter.    |        |          |           |           |           |          |           |          |         |
|           | CO2: | Evalu | ate the                                                                                                              | e perfo                                                                                     | ormano  | ce para | meter  | s of res | sonant    | inverte   | r and al  | so expla | ain the t | echniqu  | les for |
|           |      | ZVS a | ind ZCS                                                                                                              | 5                                                                                           |         |         |        |          |           |           |           |          |           |          |         |
|           | CO3: | Class | ify the                                                                                                              | y the types of multi-level inverter and also discuss the techniques for design and analysis |         |         |        |          |           |           |           |          |           |          |         |
|           |      | of mu | fy the types of multi-level inverter and also discuss the techniques for design and analysis<br>Ilti-level inverter. |                                                                                             |         |         |        |          |           |           |           |          |           |          |         |
|           | CO4: | Class | ify type                                                                                                             | es of p                                                                                     | ower s  | upplie  | s base | d on to  | pologi    | es, opei  | ration a  | nd analy | /sis .    |          |         |
|           | CO5: | Desci | ribe re                                                                                                              | sidenti                                                                                     | al, Ind | ustrial | and el | ectrica  | l utility | / applica | ations o  | f power  | electro   | nic devi | ces.    |
| Mapping   | PO1  | PO2   | PO3                                                                                                                  | PO4                                                                                         | PO5     | PO6     | PO7    | PO8      | PO9       | PO10      | PO11      | PO12     | PSO1      | PSO2     | PSO3    |
| CO1       | 2    | 3     | -                                                                                                                    | -                                                                                           | -       | -       | -      | -        | -         | -         | -         | -        | 2         | -        | 2       |
| CO2       | 2    | 3     | -                                                                                                                    | -                                                                                           | -       | -       | -      | -        | -         | -         | -         | -        | 2         | -        | 3       |
| CO3       | 2    | 3     | -                                                                                                                    | -                                                                                           | -       | -       | -      | -        | -         | -         | -         | -        | 2         | -        | 2       |
| CO4       | 2    | 3     | -                                                                                                                    | -                                                                                           | -       | -       | -      | -        | -         | -         | -         | -        | 2         | -        | 2       |
| CO5       | 3    | 3     | -                                                                                                                    | -                                                                                           | -       | -       | -      | -        | -         | -         | -         | -        | 3         | -        | 2       |

|           |      | S      | ubject                                                                                                                                                               | t: Ene   | rgy Au  | ıdit and | d Dema   | and sid | le Man   | agemen    | t - 15EB  | E653     |          |          |       |
|-----------|------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------|----------|----------|---------|----------|-----------|-----------|----------|----------|----------|-------|
| Course    | CO1: | Unde   | rstand                                                                                                                                                               | the ne   | eed of  | energy   | / audit  | and er  | nergy a  | udit me   | thodol    | ogy.     |          |          |       |
| Outcomes: | CO2: | Expla  | ain auc                                                                                                                                                              | lit para | ameter  | s and v  | workin   | g prino | ciples o | of measu  | uring ins | strumen  | ts used  | to meas  | sure  |
|           |      | the p  | arame                                                                                                                                                                | ters.    |         |          |          |         |          |           |           |          |          |          |       |
|           | CO3: | Cond   | uct en                                                                                                                                                               | ergy a   | udit of | boilers  | s, furna | aces, p | ower p   | lant, ste | eam dis   | tributio | n systen | n and    |       |
|           |      | comp   | oressed                                                                                                                                                              | l air sy | stems.  |          |          |         |          |           |           |          |          |          |       |
|           | CO4: | Cond   | uct energy audit HVAC systems, motors, pumps, blowers and cooling towers.                                                                                            |          |         |          |          |         |          |           |           |          |          |          |       |
|           | CO5: | Expla  | uct energy audit HVAC systems, motors, pumps, blowers and cooling towers.<br>in load management techniques, effects of harmonics, electricity tariff, improvement of |          |         |          |          |         |          |           |           |          |          |          |       |
|           |      | powe   | ain load management techniques, effects of harmonics, electricity tariff, improvement of er factor and losses in transmission.                                       |          |         |          |          |         |          |           |           |          |          |          |       |
|           | CO6  | Cond   | uct en                                                                                                                                                               | ergy a   | udit of | lightin  | g syste  | ems an  | d build  | lings and | d Show    | an unde  | erstandi | ng of de | emand |
|           |      | side ı | manag                                                                                                                                                                | ement    | and ei  | nergy o  | conserv  | vation. |          | -         |           |          |          | -        |       |
| Mapping   | PO1  | PO2    | PO3                                                                                                                                                                  | PO4      | PO5     | PO6      | PO7      | PO8     | PO9      | PO10      | PO11      | PO12     | PSO1     | PSO2     | PSO3  |
| CO1       | 2    | 3      | -                                                                                                                                                                    | -        | -       | -        | -        | -       | -        | -         | 3         | -        | 2        | -        | -     |
| CO2       | 3    | 2      | -                                                                                                                                                                    | -        | -       | -        | -        | -       | -        | -         | 3         | -        | 2        | -        | -     |
| CO3       | 3    | -      | -                                                                                                                                                                    | -        | -       | -        | -        | -       | -        | -         | 3         | -        | 2        | -        | -     |
| CO4       | 3    | -      | -                                                                                                                                                                    | 3        | -       | -        | -        | -       | -        | -         | 3         | -        | 2        | -        | -     |
| CO5       | 3    | 2      | -                                                                                                                                                                    | 3        | -       | -        | -        | -       | -        | -         | 3         | -        | 2        | -        | -     |

| CO6 | 3 | 2 | - | 3 | - | - | 3 | - | - | - | - | - | 2 | - | - |
|-----|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|

|           |      |       |                                                                                                                                   | Sul      | oject:   | Solar a  | and Wi  | ind En   | ergy -   | 15EE65    | 4         |          |           |           |      |  |
|-----------|------|-------|-----------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|---------|----------|----------|-----------|-----------|----------|-----------|-----------|------|--|
| Course    | CO1: | Discu | ss the                                                                                                                            | impor    | tance o  | of ener  | gy in h | uman     | life, re | lationsh  | ip amoi   | ng econ  | omy an    | d         |      |  |
| Outcomes: |      | envir | onmer                                                                                                                             | nt with  | energ    | y use a  | nd the  | increa   | sing ro  | ole of re | newabl    | e energ  | у.        |           |      |  |
|           | CO2: | Expla | in the                                                                                                                            | conce    | ot of e  | nergy s  | torage  | , the p  | rincipl  | es of en  | ergy sto  | orage de | evices ai | nd solar  |      |  |
|           |      | radia | tion or                                                                                                                           | horiz    | ontal a  | nd tilte | ed surf | ace, its | s chara  | cteristi  | cs, meas  | uremer   | nt and a  | nalysis o | of   |  |
|           |      | radia | tion da                                                                                                                           | ita.     |          |          |         |          |          |           |           |          |           |           |      |  |
|           | CO3: | Desci | ribe the                                                                                                                          | e proce  | ess of I | narnes   | sing so | lar ene  | ergy an  | d its ap  | plicatio  | ns in he | ating an  | d coolin  | g.   |  |
|           | CO4: | Discu | ss fabrication, operation of solar cell, electrical characteristics, sizing and design of solar stems and their applications.     |          |          |          |         |          |          |           |           |          |           |           |      |  |
|           |      | PV sy | iss fabrication, operation of solar cen, electrical characteristics, sizing and design of solar<br>estems and their applications. |          |          |          |         |          |          |           |           |          |           |           |      |  |
|           | CO5: | Expla | ystems and their applications.<br>ain basic Principles of Wind Energy Conversion, collection of wind data, energy estimation      |          |          |          |         |          |          |           |           |          |           |           |      |  |
|           |      | and s | ite sele                                                                                                                          | ection.  | -        |          |         |          |          |           |           |          |           |           |      |  |
|           | CO6  | Discu | ss the                                                                                                                            | perfor   | mance    | of Wi    | nd-ma   | chines   | energ    | y storag  | ge, appli | cations  | of Wind   | d Energy  | and  |  |
|           |      | envir | onmer                                                                                                                             | Ital asp | oects.   |          |         |          | -        |           |           |          |           |           |      |  |
| Mapping   | PO1  | PO2   | PO3                                                                                                                               | PO4      | PO5      | PO6      | PO7     | PO8      | PO9      | PO10      | PO11      | PO12     | PSO1      | PSO2      | PSO3 |  |
| CO1       | -    | 2     | -                                                                                                                                 | -        | -        | 2        | 3       | -        | -        | -         | -         | -        | 3         | -         | -    |  |
| CO2       | 3    | 2     | -                                                                                                                                 | -        | -        | -        | -       | -        | -        | -         | -         | -        | 3         | -         | -    |  |
| CO3       | 3    | 2     | -                                                                                                                                 | -        | -        | 3        | 3       | -        | -        | -         | -         | -        | 3         | -         | -    |  |
| CO4       | 3    | 2     | -                                                                                                                                 | -        | -        | 3        | 3       | -        | -        | -         | -         | -        | 3         | -         | -    |  |
| CO5       | 3    | 3     | -                                                                                                                                 | -        | -        | 3        | 3       | -        | -        | -         | -         | -        | 3         | -         | -    |  |
| CO6       | 3    | 2     | -                                                                                                                                 | -        | -        | -        | 3       | -        | -        | -         | -         | -        | 3         | -         | -    |  |

|           |      |       | Subjec                                                                                                                                                     | et: Art                                                                                                                     | ificial | Neural   | l Netw  | orks ar | nd Fuzz | zy logic    | - 15EE | 661       |           |           |      |  |
|-----------|------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------|----------|---------|---------|---------|-------------|--------|-----------|-----------|-----------|------|--|
| Course    | CO1: | Expla | in Org                                                                                                                                                     | anizati                                                                                                                     | on of t | he Bra   | in, Bio | logical | and A   | rtificial I | Neuron | Models    |           |           |      |  |
| Outcomes: | CO2: | Expla | in Bac                                                                                                                                                     | k prop                                                                                                                      | agatio  | n netw   | /ork ar | chitect | ure, P  | erceptro    | on Mod | el, Singl | e layer,  | Artificia | I    |  |
|           |      | Neur  | al Netv                                                                                                                                                    | vork, N                                                                                                                     | /lodel  | for Mu   | Itilaye | r Perce | ptron,  | Back pr     | opagat | ion Lear  | ning,     |           |      |  |
|           | CO3: | Expla | in Bacl                                                                                                                                                    | k propa                                                                                                                     | agatio  | n traini | ng and  | l sumn  | hary of | Back pr     | opagat | ion Algo  | orithm, E | Bidirecti | onal |  |
|           |      | Asso  | ciative                                                                                                                                                    | iative Memory (BAM) Architecture<br>n adaptive resonance theory architecture and its applications, Defuzzification methods. |         |          |         |         |         |             |        |           |           |           |      |  |
|           | CO4: | Expla | in ada                                                                                                                                                     | iative Memory (BAM) Architecture<br>n adaptive resonance theory architecture and its applications, Defuzzification methods. |         |          |         |         |         |             |        |           |           |           |      |  |
|           | CO5: | Diffe | in adaptive resonance theory architecture and its applications, Defuzzification methods.<br>rentiate between crisp logic, predicate logic and fuzzy logic. |                                                                                                                             |         |          |         |         |         |             |        |           |           |           |      |  |
|           | CO6  | Expla | in fuzz                                                                                                                                                    | y rule                                                                                                                      | based   | system   | 1       |         | -       | -           | _      |           |           |           |      |  |
| Mapping   | PO1  | PO2   | PO3                                                                                                                                                        | PO4                                                                                                                         | PO5     | PO6      | PO7     | PO8     | PO9     | PO10        | PO11   | PO12      | PSO1      | PSO2      | PSO3 |  |
| CO1       | 2    | -     | -                                                                                                                                                          | -                                                                                                                           | -       | -        | -       | -       | -       | -           | -      | -         | -         | -         | -    |  |
| CO2       | 3    | 3     | -                                                                                                                                                          | -                                                                                                                           | -       | -        | -       | -       | -       | -           | -      | -         | -         | -         | -    |  |
| CO3       | 3    | 3     | -                                                                                                                                                          | -                                                                                                                           | -       | -        | -       | -       | -       | -           | -      | -         | -         | -         | -    |  |
| CO4       | 3    | 3     | -                                                                                                                                                          | -                                                                                                                           | -       | -        | -       | -       | -       | -           | -      | -         | -         | -         | -    |  |
| CO5       | 3    | 3     | -                                                                                                                                                          | -                                                                                                                           | -       | -        | -       | -       | -       | -           | -      | -         | -         | -         | -    |  |
| CO6       | 3    | 3     | -                                                                                                                                                          | -                                                                                                                           | -       | -        | -       | -       | -       | -           | -      | -         | -         | -         | -    |  |

|           |      | Subject: SENSORS AND TRANSDUCERS-15EE662                                                        |
|-----------|------|-------------------------------------------------------------------------------------------------|
| Course    | CO1: | Explain need of transducers and sensors, their classification, advantages and disadvantages     |
| Outcomes: |      | and their working.                                                                              |
|           | CO2: | Analyse the recent trends in sensor technologies and their selection.                           |
|           | CO3: | Discuss the basics of signal conditioning, signal conditioning equipment, configuration of Data |
|           |      | Acquisition System and data conversion                                                          |

|         | CO4:<br>CO5: | Desci<br>Expla<br>force | ribe da<br>in the<br>, torqu | ta trar<br>measu<br>ie, pov                                                                                           | nsmissi<br>Iremer<br>ver and | on and<br>it of no<br>d visco: | l telem<br>on-elec<br>sity | etry<br>trical c | quantit | ies- Pre | ssure, to | empera | ture, flo | w, spee | d <i>,</i> |
|---------|--------------|-------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------------|----------------------------|------------------|---------|----------|-----------|--------|-----------|---------|------------|
| Mapping | PO1          | PO2                     | PO3                          | 3   PO4   PO5   PO6   PO7   PO8   PO9   PO10   PO11   PO12   PS01   PS02   PS03     -   -   -   -   -   -   -   -   2 |                              |                                |                            |                  |         |          |           |        |           |         |            |
| CO1     | 3            | -                       | -                            | <u> </u>                                                                                                              |                              |                                |                            |                  |         |          |           |        |           |         |            |
| CO2     | 2            | 3                       | -                            |                                                                                                                       | -                            | -                              | -                          | -                | -       | -        | -         | -      | 3         | -       | 2          |
| CO3     | 2            | 3                       | -                            |                                                                                                                       | -                            | -                              | -                          | -                | -       | -        | -         | -      | 3         | -       | 2          |
| CO4     | 2            | 3                       | -                            |                                                                                                                       | -                            | -                              | -                          | -                | -       | -        | -         | -      | 2         | -       | 2          |
| CO5     | 2            | -                       | -                            |                                                                                                                       | -                            | -                              | -                          | -                | -       | -        | -         | -      | 3         | -       | 2          |

| S         | Subject: | Batte  | ries an                          | d Fuel    | Cells    | for Co   | mmerc   | ial, Mi  | litary a | and Space | ce Appl   | ications  | - 15EE   | 663      |      |
|-----------|----------|--------|----------------------------------|-----------|----------|----------|---------|----------|----------|-----------|-----------|-----------|----------|----------|------|
| Course    | CO1:     | Discu  | iss the                          | currer    | it statu | is, the  | perfor  | mance    | capab    | ilities a | nd limita | ations o  | f rechar | geable   |      |
| Outcomes: |          | batte  | ries ar                          | nd fuel   | cells fo | or vario | ous ap  | plicatio | ons.     |           |           |           |          |          |      |
|           | CO2:     | To di  | scuss t                          | he per    | forma    | nce rec  | quirem  | ents fo  | or next  | -genera   | tion hig  | h-powe    | r rechai | rgeable  |      |
|           |          | lithiu | m-bas                            | ed bati   | teries a | and sea  | aled ni | ckel-ca  | Idmiun   | n and le  | ad-acid   | batterie  | es.      |          |      |
|           | CO3:     | Discu  | iss fuel                         | l cells t | hat are  | e best s | suited  | for app  | olicatio | ns whe    | re elect  | rical pov | wer req  | uiremer  | nts  |
|           |          | vary   | betwe                            | en seve   | eral kil | owatts   | (kW) 1  | to a fev | w meg    | awatts (  | MW)       |           |          |          |      |
|           | CO4:     | Desci  | ribe th                          | e high-   | power    | batte    | ries cu | rrently  | used l   | oy EVs a  | nd HEV    | s and va  | arious n | ext-     |      |
|           |          | gene   | ration                           | rechar    | geable   | batte    | ries be | st suite | ed for a | all-elect | ric cars, | EVs, an   | d HEVs.  |          |      |
|           | CO5:     | Discu  | iss low                          | -powe     | r batte  | ry con   | figurat | ions th  | nat are  | best su   | ited for  | compac    | ct comm  | nercial, |      |
|           |          | indus  | trial, and medical applications. |           |          |          |         |          |          |           |           |           |          |          |      |
|           | CO6      | Expla  | in the                           | design    | aspec    | ts and   | perfor  | mance    | chara    | cteristic | s of mic  | ro- and   | nano-b   | atteries | best |
|           |          | suite  | d for d                          | etectio   | on, sen  | sing, a  | nd mo   | nitorin  | g devi   | ces.      |           |           |          |          |      |
| Mapping   | PO1      | PO2    | PO3                              | PO4       | PO5      | PO6      | PO7     | PO8      | PO9      | PO10      | PO11      | PO12      | PSO1     | PSO2     | PSO3 |
| CO1       | 3        | -      | -                                | 3         | -        | -        | -       | -        | -        | -         | 2         | -         | 3        | -        | -    |
| CO2       | 3        | -      | -                                | 3         | -        | -        | -       | -        | -        | -         | 2         | -         | 3        | -        | -    |
| CO3       | 3        | -      | -                                | 3         | -        | -        | -       | -        | -        | -         | -         | -         | 3        | -        | -    |
| CO4       | 3        | -      | -                                | -         | -        | -        | -       | -        | -        | -         | -         | -         | 3        | 3        | -    |
| CO5       | 3        | -      | -                                | 3         | -        | -        | -       | -        | -        | -         | -         | -         | 3        | -        | -    |
| CO6       | 3        | -      | -                                | -         | -        | -        | -       | -        | -        | -         | -         | -         | 3        | -        | -    |

|           |      |       | S                                      | ubject                                                                             | : Indu  | strial S | Servo (           | Control        | System   | ms - 151  | EE664    |          |          |         |           |
|-----------|------|-------|----------------------------------------|------------------------------------------------------------------------------------|---------|----------|-------------------|----------------|----------|-----------|----------|----------|----------|---------|-----------|
| Course    | CO1: | Expla | in the                                 | evolut                                                                             | ion and | d classi | ificatio          | n of se        | rvos, v  | vith des  | cription | s of ser | vo drive | actuato | ors,      |
| Outcomes: |      | ampl  | ifiers,f                               | eedba                                                                              | ck tran | sducer   | s, perf           | orman          | ce, and  | d troubl  | eshooti  | ng tech  | niques.  |         |           |
|           | CO2: | Expla | in syst                                | em an                                                                              | alogs a | nd veo   | tors a            | nd the         | conce    | ot of tra | nsfer fu | nctions  | for the  |         |           |
|           | CO3. | Evolo | in mot                                 | lon ol<br>homot                                                                    | ical og |          | quatio<br>c for o | 115<br>Ioctric | 60 M 0   | motors    | hoth D   | Candb    | uchlocc  | DC con  | <b>10</b> |
|           | 005. | moto  | in mat<br>rs.                          | nemat                                                                              | ical eq | uation   | 5101 8            | lectric        | Servor   | notors,   | DOLITID  |          | usiliess | DC Serv | 0         |
|           | CO4: | Repre | esent s                                | sent servo drive components by their transfer function, to combine the servo drive |         |          |                   |                |          |           |          |          |          |         |           |
|           |      | build | ing blocks into system block diagrams. |                                                                                    |         |          |                   |                |          |           |          |          |          |         |           |
|           | CO5: | Detei | rmine t                                | he fre                                                                             | quency  | y respo  | onse te           | chniqu         | les for  | proper    | servo co | ompens   | ation.   |         |           |
|           | CO6  | Expla | in perf                                | orm in                                                                             | dices a | and pe   | rforma            | nce cr         | iteria f | or serve  | o system | ns and t | he mech  | nanical |           |
|           |      | consi | deratio                                | ons of                                                                             | servo s | system   | s.                |                |          |           |          |          |          |         |           |
| Mapping   | PO1  | PO2   | PO3                                    | PO4                                                                                | PO5     | PO6      | PO7               | PO8            | PO9      | PO10      | PO11     | PO12     | PSO1     | PSO2    | PSO3      |
| CO1       | 3    | 3     | -                                      | -                                                                                  | -       | -        | -                 | -              | -        | -         | -        | -        | 3        | -       | -         |
| CO2       | 3    | 3     | -                                      | -                                                                                  | -       | -        | -                 | -              | -        | -         | -        | -        | 3        | -       | -         |
| CO3       | 3    | 3     | -                                      | -                                                                                  | -       | -        | -                 | -              | -        | -         | -        | -        | 3        | -       | -         |

| CO4 | 3 | 3 | - | - | - | - | - | - | - | - | - | - | 3 | - | - |
|-----|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| CO5 | 3 | 2 | - | - | - | - | - | - | - | - | - | - | 3 | - | - |
| CO6 | 3 | 2 | - | - | - | - | - | - | - | - | - | - | 3 | - | - |

|           |      |       |                                                                                     | Subje    | ect: C  | ONTR    | OL SY   | STEM    | IS LAI | B-15EE   | L67      |          |         |         |       |
|-----------|------|-------|-------------------------------------------------------------------------------------|----------|---------|---------|---------|---------|--------|----------|----------|----------|---------|---------|-------|
| Course    | CO1: | Expla | in the                                                                              | perfor   | mance   | and co  | ontrol  | of step | per m  | otors, a | nd their | applica  | tions   |         |       |
| Outcomes: | CO2: | Expla | in theo                                                                             | ory of o | operat  | ion and | d contr | ol of s | witche | d reluct | ance m   | otor and | d perma | nent ma | agnet |
|           |      | brush | nless D                                                                             | .C. mo   | tors.   |         |         |         |        |          |          |          |         |         |       |
|           | CO3: | Expla | in theo                                                                             | ory of o | operati | ion and | d contr | ol of p | erman  | ent mag  | gnet syr | ichrono  | us moto | ors and |       |
|           |      | Synch | nronou                                                                              | is reluc | tance   | motor   |         |         |        |          |          |          |         |         |       |
|           | CO4: | Expla | in ope                                                                              | ration   | of sing | le pha  | se spe  | cial ma | chines | and se   | rvo mot  | ors.     |         |         |       |
|           | CO5: | Expla | ain operation of linear electrical machine and permanent magnet axial flux machines |          |         |         |         |         |        |          |          |          |         |         |       |
|           | CO6  |       |                                                                                     |          |         |         |         |         |        |          |          |          |         |         |       |
| Mapping   | PO1  | PO2   | PO3                                                                                 | PO4      | PO5     | PO6     | PO7     | PO8     | PO9    | PO10     | PO11     | PO12     | PSO1    | PSO2    | PSO3  |
| CO1       | 3    | 2     | -                                                                                   | -        | 3       | -       | -       | -       | 3      | 2        | -        | 2        | 3       | 3       | -     |
| CO2       | 3    | 3     | 3                                                                                   | -        | -       | -       | -       | -       | 3      | 2        | -        | 2        | 3       | -       | -     |
| CO3       | 3    | 2     | -                                                                                   | -        | -       | -       | -       | -       | 3      | 2        | -        | 2        | 3       | -       | -     |
| CO4       | 3    | 2     | -                                                                                   | -        | 3       | -       | -       | -       | 3      | 2        | -        | 2        | 3       | 3       | 2     |
| CO5       | 3    | 3     | 3                                                                                   | -        | 3       | -       | -       | -       | 3      | 2        | 2        | 2        | 3       | 3       | -     |

|           |      |       | Subj                                        | ect: D  | IGITA    | L SIG    | NAL P    | ROCE    | ESSING  | G LAB-    | 15EEL    | 68        |          |        |        |
|-----------|------|-------|---------------------------------------------|---------|----------|----------|----------|---------|---------|-----------|----------|-----------|----------|--------|--------|
| Course    | CO1: | Inter | pret th                                     | e sam   | oling th | neoren   | n in tim | ne dom  | nain    |           |          |           |          |        |        |
| Outcomes: | CO2: | Evalu | iate an                                     | d prov  | ide the  | e soluti | on of i  | mpuls   | e respo | nse ,ste  | ep respo | onse, ste | eady res | ponse, | steady |
|           |      | state | respo                                       | nse an  | d arbit  | rary i/p | o of a g | iven d  | ifferen | ce equa   | tion     |           |          |        |        |
|           | CO3: | Make  | e use o                                     | f convo | olution  | ofag     | iven se  | quenc   | e to ev | aluate t  | the resp | onse of   | a syste  | m.     |        |
|           | CO4: | Build | DFT &                                       | IDFT o  | f a give | en sequ  | uence    | using b | asic de | efinition | and / c  | or Fast n | nethods  |        |        |
|           | CO5: | Desig | ign and implementation of IIR & FIR filters |         |          |          |          |         |         |           |          |           |          |        |        |
| Mapping   | PO1  | PO2   | PO3                                         | PO4     | PO5      | PO6      | PO7      | PO8     | PO9     | PO10      | PO11     | PO12      | PSO1     | PSO2   | PSO3   |
| CO1       | 2    | 3     | -                                           | -       | 3        | -        | -        | -       | 2       | 2         | -        | 2         | -        | -      | -      |
| CO2       | 2    | 3     | 2                                           | 2       | 2        | -        | -        | -       | 2       | 2         | -        | -         | -        | 2      | -      |
| CO3       | 2    | 3     | -                                           | -       | 3        | -        | -        | -       | 2       | 2         | -        | 2         | -        | 3      | -      |
| CO4       | 2    | 3     | 2                                           | -       | 3        | -        | -        | -       | 2       | 2         | -        | 2         | -        | 3      | -      |
| CO5       | 2    | 3     | 2                                           | -       | 3        | -        | -        | -       | 2       | 2         | 3        | -         | -        | 3      | -      |

|           |      |       | S                                                                                                                                         | ubject  | POV      | VER S   | YSTE    | M AN     | ALYS     | IS-2 -15  | EE71      |          |          |           |      |
|-----------|------|-------|-------------------------------------------------------------------------------------------------------------------------------------------|---------|----------|---------|---------|----------|----------|-----------|-----------|----------|----------|-----------|------|
| Course    | CO1: | Form  | ulate r                                                                                                                                   | networ  | k matr   | ices ar | nd moc  | lels for | · solvin | g load f  | low pro   | blems.   |          |           |      |
| Outcomes: | CO2: | Evalu | ate th                                                                                                                                    | e stead | ly state | e powe  | er flow | analys   | is of p  | ower sy   | stems u   | sing nui | merical  | iterative | ġ    |
|           |      | techr | niques                                                                                                                                    | and su  | ggest a  | a meth  | od to d | contro   | l voltag | ge profil | e.        |          |          |           |      |
|           | CO3: | Solve | optim                                                                                                                                     | al ope  | ration   | of gen  | erators | s on a   | bus ba   | r, optim  | al unit d | commit   | nent, re | liability |      |
|           |      | consi | siderations and optimum generation scheduling.                                                                                            |         |          |         |         |          |          |           |           |          |          |           |      |
|           | CO4: | Discu | siderations and optimum generation scheduling.<br>uss optimal scheduling for hydro-thermal system, power system security and reliability. |         |          |         |         |          |          |           |           |          |          |           |      |
|           | CO5: | Analy | vse sho                                                                                                                                   | rt circ | uit faul | ts in p | ower s  | ystem    | netwo    | rks usin  | g bus in  | npedan   | ce matri | ix.       |      |
|           | CO6  | Detei | rmine                                                                                                                                     | nume    | rical so | lution  | of swir | ng equ   | ation f  | or multi  | i-machiı  | ne stabi | lity.    |           |      |
| Mapping   | PO1  | PO2   | PO3                                                                                                                                       | PO4     | PO5      | PO6     | PO7     | PO8      | PO9      | PO10      | PO11      | PO12     | PSO1     | PSO2      | PSO3 |
| CO1       | 3    | 3     | -                                                                                                                                         | -       | -        | -       | -       | -        | -        | -         | -         | -        | 2        | -         | -    |
| CO2       | 3    | 3     | -                                                                                                                                         | -       | -        | -       | -       | -        | -        | -         | -         | -        | 2        | -         | 2    |

| CO3 | 3 | 3 | - | - | - | - | - | - | - | - | - | 2 | 2 | - | - |
|-----|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| CO4 | 3 | 3 | - | - | - | - | - | - | - | - | - | 2 | 2 | - | - |
| CO5 | 2 | 3 | - | - | - | - | - | - | - | - | - | 2 | 3 | - | 2 |
| CO6 | 3 | 3 | 2 | - | - | - | - | - | - | - | - | - | 3 | - | 2 |

|           |      |         | S       | ubject                                                                                                                                                                             | : POW    | ER S      | YSTEN    | A PRC   | TECT    | ION -15  | 5EE72    |          |           |          |      |
|-----------|------|---------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|----------|---------|---------|----------|----------|----------|-----------|----------|------|
| Course    | CO1: | List tl | ne com  | poner                                                                                                                                                                              | nts of p | rotect    | ion sch  | nemes,  | relay t | termino  | logies a | nd class | ificatior | n and    |      |
| Outcomes: |      | perfo   | rmanc   | e of pr                                                                                                                                                                            | otectiv  | ve rela   | ys.      |         | •       |          | C        |          |           |          |      |
|           | CO2: | Com     | bare th | e char                                                                                                                                                                             | acteris  | tics, va  | arious s | schem   | es and  | differer | nt forms | of over  | current   | protect  | ion. |
|           | CO3: | Analy   | se the  | worki                                                                                                                                                                              | ng of d  | listance  | e relav  | s and t | he list | out the  | effects  | of arc r | esistanc  | e. powe  | er   |
|           |      | swing   | s. line | length                                                                                                                                                                             | and s    | ource i   | mpeda    | ance o  | n perfc | ormance  | of dist  | ance rel | avs.      | -, 1     |      |
|           | CO4: | Class   | ifv the | nilot n                                                                                                                                                                            | rotect   | ion sch   | iemes.   | discus  | s the c | onstruc  | tion or  | erating  | principl  | les and  |      |
|           | 0011 | perfo   | rmanc   | e of di                                                                                                                                                                            | fferen   | tial rela | avs and  | 1 prote | ction o | of gener | ators t  | ransforr | ners and  | d bus zo | ne   |
|           | CO5. | Sumr    | narize  | the nri                                                                                                                                                                            | incinle  | of curi   | rent in  | terrun  | tion in | differer | nt types | of circu | it break  | ers      | iie. |
|           | CO6  | Fynla   | in the  | arize the principle of current interruption in different types of circuit breakers.<br>In the construction and operating principle of different types of fuses, protection against |          |           |          |         |         |          |          |          |           |          |      |
|           | 000  | over    | in the  | n the construction and operating principle of different types of fuses, protection against                                                                                         |          |           |          |         |         |          |          |          |           |          |      |
| Manning   | PO1  | PO2     | PO12    |                                                                                                                                                                                    |          | PO6       |          | POS     | PO9     | PO10     | PO11     | PO12     | PSO1      | PSO2     | PSO3 |
|           | 2    | 102     | 105     | 104                                                                                                                                                                                | 105      | 200       | 107      | 100     | 107     | 1010     | 1011     | 1012     | 1501      | 1502     | 1505 |
| 01        | 3    | -       | -       | -                                                                                                                                                                                  | -        | Z         | -        | -       | -       | -        | -        | -        | Z         | -        | -    |
| CO2       | 2    | 2       | -       | -                                                                                                                                                                                  | -        | 2         | -        | -       | -       | -        | -        | 2        | 2         | -        | -    |
| CO3       | 3    | 3       | -       | -                                                                                                                                                                                  | -        | 2         | -        | -       | -       | -        | -        | -        | 2         | -        | -    |
| CO4       | 3    | -       | -       | -                                                                                                                                                                                  | -        | 2         | -        | -       | -       | -        | -        | 2        | 2         | -        | -    |
| CO5       | 2    | -       | -       | -                                                                                                                                                                                  | -        | 2         | -        | -       | -       | -        | -        | -        | 2         | -        | -    |
| CO6       | 2    | -       | -       | -                                                                                                                                                                                  | -        | 2         | -        | -       | -       | -        | -        | 2        | 2         | -        | -    |

|           |      |       | S               | ubject  | : HIG   | H VOI   | LTAGE    | E ENG    | INEEF    | RING-1    | 5EE73    |          |          |          |        |
|-----------|------|-------|-----------------|---------|---------|---------|----------|----------|----------|-----------|----------|----------|----------|----------|--------|
| Course    | CO1: | Expla | in brea         | akdow   | n pher  | omeno   | on in se | olid die | electric | cs.       |          |          |          |          |        |
| Outcomes: | CO2: | Discu | iss the         | genera  | ation o | f high  | voltage  | es and   | curren   | its.      |          |          |          |          |        |
|           | CO3: | Analy | /ze me          | asuren  | nent te | echniqu | ues for  | high v   | oltage   | s and cu  | irrents  |          |          |          |        |
|           | CO4: | Analy | /ze ove         | ervolta | ge phe  | nomer   | non an   | d insul  | ation o  | coordina  | ition in | electric | power s  | systems  |        |
|           | CO5: | Analy | /ze nor         | n-destr | uctive  | testing | g of ma  | aterials | and e    | lectric a | pparatu  | us and h | igh-volt | age test | ing of |
|           |      | elect | ctric apparatus |         |         |         |          |          |          |           |          |          |          |          |        |
| Mapping   | PO1  | PO2   | PO3             | PO4     | PO5     | PO6     | PO7      | PO8      | PO9      | PO10      | PO11     | PO12     | PSO1     | PSO2     | PSO3   |
| CO1       | 3    | -     | -               | -       | -       | -       | -        | -        | -        | -         | -        | 2        | 3        | -        | 2      |
| CO2       | -    | 2     | -               | -       | -       | -       | -        | -        | -        | -         | -        | 2        | -        | -        | 3      |
| CO3       | 2    | 3     | -               | -       | -       | -       | -        | -        | -        | -         | -        | -        | 2        | -        | 3      |
| CO4       | 2    | 3     | -               | -       | -       | -       | -        | -        | -        | -         | -        | -        | 2        | -        | 3      |
| CO5       | 2    | 3     | -               | -       | -       | -       | -        | -        | -        | -         | -        | 3        | 2        | -        | 3      |

|           |      | Subject: Advanced Control Systems - 15EE741                                                                            |
|-----------|------|------------------------------------------------------------------------------------------------------------------------|
| Course    | CO1: | Discuss state variable approach for linear time invariant systems in both the continuous and                           |
| Outcomes: |      | discrete time systems.                                                                                                 |
|           | CO2: | Develop of state models for linear continuous – time and discrete – time systems.                                      |
|           | CO3: | Apply vector and matrix algebra to find the solution of state equations for linear continuous –                        |
|           |      | time and discrete – time systems.                                                                                      |
|           | CO4: | Define controllability and observability of a system and test for controllability and observability of a given system. |

|         | CO5: | Desig | n pole                                                                   | assign                                                                                                                     | ment    | and sta | ate obs                | erver  | using s | tate fee | dback.   |          |            |          |   |  |
|---------|------|-------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------|---------|------------------------|--------|---------|----------|----------|----------|------------|----------|---|--|
|         | CO6  | Deve  | lop the                                                                  | e descr                                                                                                                    | ibing f | unctio  | n f <mark>or</mark> th | ne non | lineari | ty prese | nt to as | sess the | e stabilit | y of the |   |  |
|         |      | syste | m and Lyapunov function for the stability analysis of nonlinear systems. |                                                                                                                            |         |         |                        |        |         |          |          |          |            |          |   |  |
| Mapping | PO1  | PO2   | PO3                                                                      | O3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3                                                                   |         |         |                        |        |         |          |          |          |            |          |   |  |
| CO1     | 3    | 3     | -                                                                        | D3   PO4   PO5   PO6   PO7   PO8   PO9   PO10   PO11   PO12   PS01   PS02   PS03     -   -   -   -   -   -   -   3   -   - |         |         |                        |        |         |          |          |          |            |          |   |  |
| CO2     | 3    | 3     | 3                                                                        | -                                                                                                                          | -       | -       | -                      | -      | -       | -        | -        | -        | 3          | -        | - |  |
| CO3     | 3    | 3     | -                                                                        | -                                                                                                                          | -       | -       | -                      | -      | -       | -        | -        | -        | 3          | -        | - |  |
| CO4     | 3    | -     | -                                                                        | -                                                                                                                          | -       | -       | -                      | -      | -       | -        | -        | -        | 3          | -        | - |  |
| CO5     | 3    | 3     | 3                                                                        | 3                                                                                                                          | -       | -       | -                      | -      | -       | -        | -        | -        | 3          | -        | - |  |
| CO6     | 3    | 3     | 3                                                                        | 3                                                                                                                          | -       | -       | -                      | -      | -       | -        | -        | -        | 3          | -        | - |  |

|           |      |       | Subjec                                                                                                 | et: UT                                                                              | ILIZA    | TION     | OF EI    | LECTR    | ICAL     | POWE      | R-15EE   | 742       |           |         |      |  |
|-----------|------|-------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------|----------|----------|----------|----------|-----------|----------|-----------|-----------|---------|------|--|
| Course    | CO1: | Iden  | tify a h                                                                                               | eating                                                                              | / weld   | ing sch  | neme f   | or a giv | /en apj  | olicatior | n and ab | ole to ur | nderstar  | nd      |      |  |
| Outcomes: |      | Fund  | ament                                                                                                  | al prin                                                                             | ciples,  | extrac   | tion, re | efining  | of me    | tals and  | electro  | plating   | applicat  | ion     |      |  |
|           | CO2: | Analy | vse lan                                                                                                | nps an                                                                              | d fittin | igs in u | se and   | desig    | n for a  | pplicati  | on       |           |           |         |      |  |
|           | CO3: | Expla | in the                                                                                                 | differ                                                                              | ent sch  | nemes    | of trac  | tion sc  | hemes    | and its   | main co  | ompone    | ents and  | will be | able |  |
|           |      | to de | sign a                                                                                                 | suitabl                                                                             | e sche   | me of    | speed    | contro   | l for th | ne tracti | on syste | ems       |           |         |      |  |
|           | CO4: | Expla | in the                                                                                                 | n the various braking operation for different types of drives and discuss about the |          |          |          |          |          |           |          |           |           |         |      |  |
|           |      | Tram  | in the various braking operation for different types of drives and discuss about the ways and Trolley. |                                                                                     |          |          |          |          |          |           |          |           |           |         |      |  |
|           | CO5: | Analy | vze abo                                                                                                | out the                                                                             | Perfo    | rmance   | e, conc  | ept an   | d arch   | itecture  | of diffe | erent Ele | ectric Ve | hicles. |      |  |
| Mapping   | PO1  | PO2   | PO3                                                                                                    | PO4                                                                                 | PO5      | PO6      | PO7      | PO8      | PO9      | PO10      | PO11     | PO12      | PSO1      | PSO2    | PSO3 |  |
| CO1       | 3    | 3     | 2                                                                                                      | -                                                                                   | -        | -        | -        | -        | -        | -         | -        | -         | 3         | -       | -    |  |
| CO2       | 3    | 3     | 2                                                                                                      | 3                                                                                   | -        | -        | -        | -        | -        | -         | -        | -         | 3         | -       | -    |  |
| CO3       | 3    | 3     | -                                                                                                      | -                                                                                   | -        | -        | -        | -        | -        | -         | -        | -         | 3         | -       | -    |  |
| CO4       | 3    | -     | -                                                                                                      | -                                                                                   | -        | -        | -        | -        | -        | -         | -        | -         | 3         | -       | -    |  |
| CO5       | 2    | -     | -                                                                                                      | -                                                                                   | -        | -        | -        | -        | -        | -         | -        | 3         | 3         | -       | -    |  |

|           |      |        |                                                                                                           | Subje                                                                                            | ect: Ca  | arbon ( | Capture | e and S | torage  | - 15EE    | 743      |          |          |      |      |  |  |
|-----------|------|--------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------|---------|---------|---------|---------|-----------|----------|----------|----------|------|------|--|--|
| Course    | CO1: | Discu  | ss the                                                                                                    | impac                                                                                            | ts of cl | imate   | change  | and t   | he mea  | asures tl | hat can  | be take  | n to red | luce |      |  |  |
| Outcomes: |      | emiss  | sions.                                                                                                    |                                                                                                  |          |         |         |         |         |           |          |          |          |      |      |  |  |
|           | CO2: | Discu  | ss cark                                                                                                   | oon ca                                                                                           | pture a  | and car | bon st  | orage.  |         |           |          |          |          |      |      |  |  |
|           | CO3: | Expla  | in the                                                                                                    | fundar                                                                                           | nental   | s of po | wer ge  | enerati | on.     |           |          |          |          |      |      |  |  |
|           | CO4: | Expla  | in met                                                                                                    | hods c                                                                                           | of carb  | on cap  | ture fr | om po   | wer ge  | neratio   | n and in | dustrial | proces   | ses. |      |  |  |
|           | CO5: | Expla  | in diffe                                                                                                  | different carbon storage methods: storage in coal seams, depleted gas reservoirs and formations. |          |         |         |         |         |           |          |          |          |      |      |  |  |
|           |      | saline | ain different carbon storage methods: storage in coal seams, depleted gas reservoirs and<br>e formations. |                                                                                                  |          |         |         |         |         |           |          |          |          |      |      |  |  |
|           | CO6  | Expla  | in Carl                                                                                                   | oon die                                                                                          | oxide c  | ompre   | ssion a | and pip | eline t | ranspor   | t.       |          |          |      |      |  |  |
| Mapping   | PO1  | PO2    | PO3                                                                                                       | PO4                                                                                              | PO5      | PO6     | PO7     | PO8     | PO9     | PO10      | PO11     | PO12     | PSO1     | PSO2 | PSO3 |  |  |
| CO1       | -    | 3      | -                                                                                                         | -                                                                                                | -        | 3       | 3       | -       | -       | -         | -        | -        | -        | -    | -    |  |  |
| CO2       | 3    | -      | -                                                                                                         | -                                                                                                | -        | -       | -       | -       | -       | -         | -        | -        | -        | -    | -    |  |  |
| CO3       | 3    | -      | -                                                                                                         | -                                                                                                | -        | -       | -       | -       | -       | -         | -        | -        | -        | -    | -    |  |  |
| CO4       | 3    | 3      | -                                                                                                         | -                                                                                                | -        | -       | -       | -       | -       | -         | -        | -        | -        | -    | -    |  |  |
| CO5       | 3    | 3      | -                                                                                                         | -                                                                                                | -        | -       | -       | -       | -       | -         | -        | -        | -        | -    | -    |  |  |
| CO6       | 3    | -      | -                                                                                                         | -                                                                                                | -        | 3       | 3       | -       | -       | -         | -        | -        | -        | -    | -    |  |  |

|      | Subject: Power System Planning - 15EE744                          |
|------|-------------------------------------------------------------------|
| CO1: | Explain the basic concept and structure of power system planning. |

| Course    | CO2: | Analy | /se the                                                                                 | differ                                                                                                                          | ent str | ategy o  | of gene | eration | planni  | ing to in | nprove | national | grid.  |       |   |  |
|-----------|------|-------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|---------|----------|---------|---------|---------|-----------|--------|----------|--------|-------|---|--|
| Outcomes: | CO3: | Analy | /se diff                                                                                | erent                                                                                                                           | design  | ing of o | optimu  | m pov   | ver sys | tem exp   | ansion | with co  | mputer | aided |   |  |
|           |      | planr | ning.                                                                                   |                                                                                                                                 |         |          |         |         |         |           |        |          |        |       |   |  |
|           | CO4: | Expla | ain the process to improve reliability of power system and reactive power compensation. |                                                                                                                                 |         |          |         |         |         |           |        |          |        |       |   |  |
| Mapping   | PO1  | PO2   | PO3                                                                                     | the process to improve reliability of power system and reactive power compensation.O3PO4PO5PO6PO7PO8PO9PO10PO11PO12PS01PSO2PSO3 |         |          |         |         |         |           |        |          |        |       |   |  |
| CO1       | 2    | -     | -                                                                                       | 2                                                                                                                               | -       | -        | 3       | -       | -       | -         | 3      | -        | 3      | -     | - |  |
| CO2       | 3    | 2     | 3                                                                                       | 3                                                                                                                               | -       | 2        | -       | -       | -       | -         | 3      | -        | 2      | 2     | 3 |  |
| CO3       | 3    | 3     | 3                                                                                       | -                                                                                                                               | 2       | -        | -       | -       | -       | -         | 2      | 3        | 1      | 3     | 2 |  |
| CO4       | 3    | 3     | -                                                                                       | 2                                                                                                                               | 2       | -        | -       | -       | -       | -         | -      | 1        | 3      | -     | 2 |  |

|           |      |       | S                                                                                                                                                                    | ubject                                                                                                                                                                       | : FAC   | Ts and   | l HVD    | C Trar   | nsmissi  | on - 151  | EE751     |           |            |           |        |  |  |
|-----------|------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------|----------|----------|----------|-----------|-----------|-----------|------------|-----------|--------|--|--|
| Course    | CO1: | Discu | ss trar                                                                                                                                                              | nsmissi                                                                                                                                                                      | on inte | erconn   | ection   | s, flow  | of Pov   | ver in ar | ו AC Sys  | stem, lin | nits of t  | he loadi  | ng     |  |  |
| Outcomes: |      | capal | oility,d                                                                                                                                                             | ynami                                                                                                                                                                        | c stabi | lity cor | nsidera  | tions c  | of a tra | nsmissi   | on inter  | connect   | tion and   | l contro  | llable |  |  |
|           |      | parar | neters                                                                                                                                                               | •                                                                                                                                                                            |         |          |          |          |          |           |           |           |            |           |        |  |  |
|           | CO2: | Expla | in the                                                                                                                                                               | basic o                                                                                                                                                                      | oncep   | ts, def  | inition  | s of fle | xible a  | c transn  | nission   | systems   | and be     | nefits fr | om     |  |  |
|           |      | FACT  | S techi                                                                                                                                                              | nology                                                                                                                                                                       | •       |          |          |          |          |           |           |           |            |           |        |  |  |
|           | CO3: | Desci | ribe sh                                                                                                                                                              | unt co                                                                                                                                                                       | ntrolle | rs, Sta  | tic Var  | Comp     | ensato   | r and St  | atic Cor  | npensat   | tor for ii | njecting  |        |  |  |
|           |      | react | ive pov                                                                                                                                                              | wer in                                                                                                                                                                       | the tra | nsmis    | sion sy  | stem i   | n enha   | ncing th  | ne contr  | ollabilit | y and po   | ower tra  | insfer |  |  |
|           |      | capal | oility.                                                                                                                                                              | ility.<br>be series Controllers Thyristor-Controlled Series Capacitor (TCSC) and the Static<br>concus Series Compensator (SSSC) for control of the transmission line current |         |          |          |          |          |           |           |           |            |           |        |  |  |
|           | CO4: | Desci | ribe se                                                                                                                                                              | ibe series Controllers Thyristor-Controlled Series Capacitor (TCSC) and the Static ronous Series Compensator (SSSC) for control of the transmission line current.            |         |          |          |          |          |           |           |           |            |           |        |  |  |
|           |      | Syncł | ibe series Controllers Thyristor-Controlled Series Capacitor (TCSC) and the Static<br>ronous Series Compensator (SSSC) for control of the transmission line current. |                                                                                                                                                                              |         |          |          |          |          |           |           |           |            |           |        |  |  |
|           | CO5: | Expla | in adv                                                                                                                                                               | antage                                                                                                                                                                       | s of H  | VDC pc   | wer tr   | ansmis   | ssion, o | overviev  | v and or  | rganizat  | ion of H   | VDC sys   | stem   |  |  |
|           |      | and c | onvert                                                                                                                                                               | ter con                                                                                                                                                                      | trol fo | r HVD(   | C syste  | ms, co   | mmuta    | ation fai | lure, co  | ntrol fu  | nctions.   |           |        |  |  |
|           | CO6  | Desci | ribe th                                                                                                                                                              | e basic                                                                                                                                                                      | comp    | onents   | s of a c | onvert   | er, the  | metho     | ds for co | ompens    | ating th   | e reacti  | ve     |  |  |
|           |      | powe  | er dem                                                                                                                                                               | anded                                                                                                                                                                        | by the  | conve    | rter.    |          |          |           |           |           |            |           |        |  |  |
| Mapping   | PO1  | PO2   | PO3                                                                                                                                                                  | PO4                                                                                                                                                                          | PO5     | PO6      | PO7      | PO8      | PO9      | PO10      | PO11      | PO12      | PSO1       | PSO2      | PSO3   |  |  |
| CO1       | 3    | -     | -                                                                                                                                                                    | -                                                                                                                                                                            | -       | -        | -        | -        | -        | -         | -         | -         | 2          | -         | -      |  |  |
| CO2       | 3    | -     | -                                                                                                                                                                    | -                                                                                                                                                                            | -       | -        | -        | -        | -        | -         | -         | -         | 2          | -         | -      |  |  |
| CO3       | 3    | 2     | -                                                                                                                                                                    | -                                                                                                                                                                            | -       | -        | -        | -        | -        | -         | -         | -         | 2          | -         | -      |  |  |
| CO4       | 3    | 2     | -                                                                                                                                                                    | -                                                                                                                                                                            | -       | -        | -        | -        | -        | -         | -         | -         | 2          | -         | -      |  |  |
| CO5       | 3    | 2     | -                                                                                                                                                                    | -                                                                                                                                                                            | -       | -        | -        | -        | -        | -         | -         | -         | 2          | -         | -      |  |  |
| CO6       | 3    | 2     | -                                                                                                                                                                    | -                                                                                                                                                                            | -       | -        | -        | -        | -        | -         | -         | -         | 2          | -         | -      |  |  |

|           | Subject | : TES  | TING (   | & COI    | MMISS    | SIONI    | NG OF   | FPOW    | ER SY    | STEM     | APPAR      | ATUS     | - 15EE7   | '52      |      |
|-----------|---------|--------|----------|----------|----------|----------|---------|---------|----------|----------|------------|----------|-----------|----------|------|
| Course    | CO1:    | Expla  | in the   | Installa | ation o  | of trans | forme   | rs, Pro | per me   | ethods c | of install | ation to | give lo   | ng troub | ole- |
| Outcomes: |         | free s | service  | and d    | ifferen  | t tools  | used f  | or inst | allatio  | n proces | ss.        |          |           |          |      |
|           | CO2:    | Discu  | ss the   | Install  | ation c  | of Syncl | hronou  | us Mac  | hines a  | and thei | r routin   | e tests. |           |          |      |
|           | CO3:    | analy  | ze the   | Comm     | nission  | ing tes  | t and i | nstalla | tion of  | Inducti  | on moto    | or.      |           |          |      |
|           | CO4:    | expla  | in the   | Handli   | ng, Te   | sting a  | nd inst | allatio | n of ur  | ndergrou | und cab    | les and  | its fault | clearan  | ce.  |
|           | CO5:    | Analy  | vse and  | discu    | ss the   | protec   | tion e  | quipme  | ent 'sw  | vitchgea | r', its pr | oper m   | aintena   | nce for  |      |
|           |         | prote  | ection o | of elec  | trical s | ystems   | s and d | omest   | ic testi | ng metl  | nods an    | d rules. |           |          |      |
| Mapping   | PO1     | PO2    | PO3      | PO4      | PO5      | PO6      | PO7     | PO8     | PO9      | PO10     | PO11       | PO12     | PSO1      | PSO2     | PSO3 |
| CO1       | 3       | 2      | -        | -        | -        | -        | -       | -       | -        | -        | 2          | 2        | 2         | -        | -    |
| CO2       | 3       | -      | -        | 2        | -        | -        | -       | -       | -        | -        | 2          | 2        | 2         | -        | -    |
| CO3       | 2       | 2      | -        | -        | -        | -        | -       | -       | -        | -        | 2          | 2        | 2         | -        | -    |
| CO4       | 2       | -      | -        | 2        | -        | -        | -       | -       | -        | -        | 2          | 2        | 2         | -        | -    |
| CO5       | 2       | 2      | -        | -        | -        | -        | -       | -       | -        | -        | 2          | 2        | 2         | -        | -    |

|           |      |        | S                         | Subjec                                                                                 | t: Spa   | cecraft   | Powe    | r Tech  | nologie | es - 15E | E753      |          |          |          |      |  |
|-----------|------|--------|---------------------------|----------------------------------------------------------------------------------------|----------|-----------|---------|---------|---------|----------|-----------|----------|----------|----------|------|--|
| Course    | CO1: | Descr  | ribe th                   | e elem                                                                                 | ents o   | f a spa   | ce pho  | tovolta | aic pov | ver syst | em, the   | status o | of solar | cell     |      |  |
| Outcomes: |      | techr  | nologie                   | s prese                                                                                | ently ir | n use.    |         |         |         |          |           |          |          |          |      |  |
|           | CO2: | Discu  | ss adv                    | ances i                                                                                | in both  | n cell ai | nd arra | iy tech | nology  | , and sc | lar ther  | mo pho   | tovolta  | ic energ | y    |  |
|           |      | conve  | ersion.                   |                                                                                        |          |           |         | -       |         |          |           | -        |          | -        | -    |  |
|           | CO3: | Discu  | sses, s                   | sses, space-qualified components, the array of chemical storage technologies including |          |           |         |         |         |          |           |          |          |          |      |  |
|           |      | both   | batteries and fuel cells. |                                                                                        |          |           |         |         |         |          |           |          |          |          |      |  |
|           | CO4: | Descr  | ribe co                   | mpone                                                                                  | ents an  | id tech   | niques  | for ac  | hieving | g the va | rious Pc  | wer Ma   | anagem   | ent and  |      |  |
|           |      | Distri | bution                    | functi                                                                                 | ons an   | id exar   | nples d | of seve | ral PM  | AD conf  | figuratio | ons.     | -        |          |      |  |
| Mapping   | PO1  | PO2    | PO3                       | PO4                                                                                    | PO5      | PO6       | PO7     | PO8     | PO9     | PO10     | PO11      | PO12     | PSO1     | PSO2     | PSO3 |  |
| CO1       | 3    | 2      | -                         | -                                                                                      | -        | -         | -       | -       | -       | -        | -         | -        | -        | -        | -    |  |
| CO2       | 3    | 2      | -                         | -                                                                                      | -        | -         | -       | -       | -       | -        | -         | -        | 2        | -        | -    |  |
| CO3       | 3    | 2      | -                         | -                                                                                      | -        | -         | -       | -       | -       | -        | -         | -        | -        | -        | -    |  |
| CO4       | 3    | 2      | -                         | -                                                                                      | -        | -         | -       | -       | -       | -        | -         | -        | -        | -        | -    |  |

|           |      |       |             |         | Subjec  | t: Ind   | ustrial  | Heatin   | ıg - 151 | EE754    |         |           |        |       |      |
|-----------|------|-------|-------------|---------|---------|----------|----------|----------|----------|----------|---------|-----------|--------|-------|------|
| Course    | CO1: | Expla | in con      | structi | on, cla | ssificat | ion of   | indust   | rial fur | naces    |         |           |        |       |      |
| Outcomes: | CO2: | Expla | in the      | metho   | ods of  | heat tr  | ansfer   | in ind   | ustrial  | furnace  | s.      |           |        |       |      |
|           | CO3: | Expla | in hea      | ting ca | pacity  | of bate  | ch furn  | aces a   | nd cor   | itinuous | furnac  | es        |        |       |      |
|           | CO4: | Expla | in me       | thods   | of savi | ng ene   | rgy in i | ndustr   | ial fur  | nace sys | tems ar | nd fuel d | consum | otion |      |
|           |      | calcu | alculation. |         |         |          |          |          |          |          |         |           |        |       |      |
|           | CO5: | Expla | in ope      | ration  | and co  | ontrol o | of indu  | strial f | urnace   | s.       |         |           |        |       |      |
| Mapping   | PO1  | PO2   | PO3         | PO4     | PO5     | PO6      | PO7      | PO8      | PO9      | PO10     | PO11    | PO12      | PSO1   | PSO2  | PSO3 |
| CO1       | 3    | 2     | -           | -       | -       | -        | -        | -        | -        | -        | -       | -         | 2      | -     | -    |
| CO2       | 3    | 2     | -           | -       | -       | -        | -        | -        | -        | -        | -       | -         | 2      | -     | -    |
| CO3       | 3    | 2     | 2           | -       | -       | -        | -        | -        | -        | -        | -       | -         | 2      | -     | -    |
| CO4       | 3    | 2     | 2           | -       | -       | -        | -        | -        | -        | -        | 3       | -         | 2      | -     | -    |
| CO5       | 3    | 3     | -           | -       | -       | -        | -        | -        | -        | -        | -       | -         | 2      | -     | -    |

|           |      |        | Subj                                                                                                                                | ect: P  | OWEF    | R SYS   | ГЕМ S    | IMUL    | ATIO    | N LAB-    | 15EEL7   | 76        |           |           |      |
|-----------|------|--------|-------------------------------------------------------------------------------------------------------------------------------------|---------|---------|---------|----------|---------|---------|-----------|----------|-----------|-----------|-----------|------|
| Course    | CO1: | Deve   | lop a p                                                                                                                             | rograr  | n in M  | ATLAB   | to asse  | ess the | perfo   | rmance    | of med   | ium and   | l long tr | ansmiss   | ion  |
| Outcomes: |      | lines. |                                                                                                                                     |         |         |         |          |         |         |           |          |           |           |           |      |
|           | CO2: | Build  | a prog                                                                                                                              | gram ir | MATL    | AB to   | obtain   | the po  | wer a   | ngle cur  | ves of s | alient ai | nd non-   | salient p | ole  |
|           |      | alterr | nators.                                                                                                                             |         |         |         |          |         |         |           |          |           |           |           |      |
|           | CO3: | Deve   | lop a p                                                                                                                             | rograr  | n in M  | ATLAB   | to asse  | ess tra | nsient  | stability | throug   | h swing   | curve a   | nd anal   | yse  |
|           |      | short  | circuit faults using Mi-Power software package.<br>programs in MATLAB to formulate bus admittance and bus impedance matrices of     |         |         |         |          |         |         |           |          |           |           |           |      |
|           | CO4: | Build  | t circuit faults using Mi-Power software package.<br>I programs in MATLAB to formulate bus admittance and bus impedance matrices of |         |         |         |          |         |         |           |          |           |           |           |      |
|           |      | inter  | b programs in MATLAB to formulate bus admittance and bus impedance matrices of connected power systems.                             |         |         |         |          |         |         |           |          |           |           |           |      |
|           | CO5: | Solve  | powe                                                                                                                                | r flow  | proble  | m for a | a simpl  | e pow   | er syst | em usin   | g Mi-Po  | wer sof   | tware p   | ackage.   |      |
|           | CO6: | Solve  | optim                                                                                                                               | al gen  | eratior | n sched | luling p | oroble  | ms for  | therma    | l power  | plants (  | using M   | i-Power   |      |
|           |      | softw  | ,<br>are pa                                                                                                                         | ickage. |         |         |          |         |         |           |          | •         | -         |           |      |
| Mapping   | PO1  | PO2    | PO3                                                                                                                                 | PO4     | PO5     | PO6     | PO7      | PO8     | PO9     | PO10      | PO11     | PO12      | PSO1      | PSO2      | PSO3 |
| CO1       | 3    | 3      | -                                                                                                                                   | -       | 3       | -       | -        | -       | 3       | 2         | -        | -         | 2         | 3         | -    |
| CO2       | 3    | 3      | -                                                                                                                                   | -       | 3       | -       | -        | -       | 3       | 2         | -        | -         | 2         | 3         | -    |
| CO3       | 3    | 3      | -                                                                                                                                   | 2       | 3       | -       | -        | -       | 3       | 2         | 2        | 2         | 2         | 3         | 2    |

| CO4 | 3 | 2 | - | - | 3 | - | - | - | 3 | 2 | - | - | 2 | 3 | - |
|-----|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| CO5 | 3 | 3 | 3 | 2 | 3 | - | - | - | 3 | 2 | 2 | 2 | 2 | 3 | 2 |
| CO6 | 3 | 3 | 3 | 2 | 3 | - | - | - | 3 | 2 | 2 | 2 | 2 | 3 | 2 |

|           |      |       |                                                                         | Su                                                                                                                                                                 | bject:  | RELA     | Y AN     | D HV    | LAB-1   | 5EEL7     | 7       |         |         |         |       |  |
|-----------|------|-------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------|----------|---------|---------|-----------|---------|---------|---------|---------|-------|--|
| Course    | CO1: | Demo  | onstrat                                                                 | e the o                                                                                                                                                            | charac  | teristic | s of el  | ectrom  | agneti  | ic relays |         |         |         |         |       |  |
| Outcomes: | CO2: | Demo  | onstrat                                                                 | e the o                                                                                                                                                            | charac  | teristic | s of m   | icropro | ocesso  | r based   | relays  |         |         |         |       |  |
|           | CO3: | Analy | ze the                                                                  | spark                                                                                                                                                              | over c  | haract   | eristics | for bo  | oth uni | form an   | d non-u | iniform | configu | rations | using |  |
|           |      | High  | AC and                                                                  | I DC vo                                                                                                                                                            | oltages |          |          |         |         |           |         |         | Ū       |         | C     |  |
|           | CO4: | Meas  | sure high AC and DC voltages and breakdown strength of transformer oil. |                                                                                                                                                                    |         |          |          |         |         |           |         |         |         |         |       |  |
|           | CO5: | Const | truct tl                                                                | ure high AC and DC voltages and breakdown strength of transformer oil.<br>ruct the electric field and measure the capacitance of different electrode configuration |         |          |          |         |         |           |         |         |         |         |       |  |
|           |      | mode  | els                                                                     |                                                                                                                                                                    |         |          |          |         |         |           |         |         |         | U       |       |  |
| Mapping   | PO1  | PO2   | PO3                                                                     | PO4                                                                                                                                                                | PO5     | PO6      | PO7      | PO8     | PO9     | PO10      | PO11    | PO12    | PSO1    | PSO2    | PSO3  |  |
| CO1       | -    | 2     | -                                                                       | -                                                                                                                                                                  | 2       | -        | -        | -       | 2       | 3         | -       | -       | 3       | 2       | 2     |  |
| CO2       | -    | 2     | -                                                                       | -                                                                                                                                                                  | -       | -        | -        | -       | 2       | 2         | 2       | 2       | 3       | -       | 2     |  |
| CO3       | -    | 2     | -                                                                       | -                                                                                                                                                                  | 2       | -        | -        | -       | 2       | 3         | -       | 2       | 3       | 2       | 3     |  |
| CO4       | -    | 2     | -                                                                       | -                                                                                                                                                                  | 2       | -        | -        | -       | 2       | 2         | 2       | -       | 3       | 2       | 3     |  |
| CO5       | -    | 2     | -                                                                       | -                                                                                                                                                                  | -       | -        | -        | -       | 2       | 2         | 2       | 2       | 3       | -       | 3     |  |

|           |      |                |                                                                                                     | S                   | ubject           | : PRC             | JECT            | PHAS                | E-1-15             | EEP78               |                  |          |          |           |      |  |
|-----------|------|----------------|-----------------------------------------------------------------------------------------------------|---------------------|------------------|-------------------|-----------------|---------------------|--------------------|---------------------|------------------|----------|----------|-----------|------|--|
| Course    | CO1: | Ident          | ify and                                                                                             | l formı             | ulate tl         | he engi           | ineerir         | ig prob             | lems f             | or the n            | eed of s         | society. |          |           |      |  |
| Outcomes: | CO2: | Desig<br>inter | n solu <sup>.</sup><br>pretati                                                                      | tions fo<br>on of c | or engi<br>lata. | ineerin           | g prob          | lems u              | ising m            | odern t             | ool/tec          | hnology  | to inve  | stigate v | with |  |
|           | CO3: | Discu<br>susta | ss the<br>inable                                                                                    | impac<br>develo     | t of th<br>opmen | e engin<br>t with | neering<br>comm | g solut<br>it to pr | ions in<br>ofessio | societa<br>onal eth | l and en<br>ics. | ivironm  | ental co | ntexts f  | or   |  |
|           | CO4: | Deve           | elop team work for conducting the project and Communicate effectively through reports & sentations. |                     |                  |                   |                 |                     |                    |                     |                  |          |          |           |      |  |
|           | CO5: | Adap           | t engir                                                                                             | neering             | g, mana          | ageme             | nt and          | ethica              | l princ            | iples for           | · Project        | t manag  | ement a  | and fina  | nce. |  |
| Mapping   | PO1  | PO2            | PO3                                                                                                 | PO4                 | PO5              | PO6               | PO7             | PO8                 | PO9                | PO10                | PO11             | PO12     | PSO1     | PSO2      | PSO3 |  |
| CO1       | 3    | 3              | -                                                                                                   | -                   | -                | 3                 | -               | -                   | -                  | -                   | -                | 2        | 3        | 3         | 3    |  |
| CO2       | -    | -              | 3                                                                                                   | 3                   | 3                | -                 | -               | -                   | -                  | -                   | -                | 3        | 3        | 3         | 3    |  |
| CO3       | -    | -              | -                                                                                                   | -                   | -                | 3                 | 3               | 3                   | -                  | -                   | -                | 3        | 3        | 3         | 3    |  |
| CO4       | -    | -              | -                                                                                                   | -                   | -                | -                 | -               | -                   | 3                  | 3                   | -                | 3        | 3        | 3         | 3    |  |
| CO5       | -    | -              | 2                                                                                                   | -                   | -                | -                 | -               | 3                   | -                  | -                   | 3                | 3        | 3        | 3         | 3    |  |

|           |      | Sut   | ject:                                                                                      | POWE     | ER SYS  | STEM    | OPER     | ATIO    | N ANI     | D CONT    | ROL-1   | 5EE81       |           |          |      |
|-----------|------|-------|--------------------------------------------------------------------------------------------|----------|---------|---------|----------|---------|-----------|-----------|---------|-------------|-----------|----------|------|
| Course    | CO1: | Descr | ibe va                                                                                     | rious le | evels o | f contr | ols in   | power   | systen    | ns, the v | ulnerab | oility of t | the syst  | em,      |      |
| Outcomes: |      | comp  | onent                                                                                      | s, arch  | itectur | e and   | configu  | uratior | of SC/    | ADA.      |         |             |           |          |      |
|           | CO2: | Solve | Unit C                                                                                     | Commi    | tment   | Proble  | ms in a  | a powe  | er syste  | em.       |         |             |           |          |      |
|           | CO3: | Evalu | ate the                                                                                    | e gene   | ration  | schedu  | uling of | f hydro | therm     | al syste  | m with  | various     | algorith  | ms of it |      |
|           | CO4: | Deve  | evelop mathematical models of ALFC by identifying the basic control loops in generator and |          |         |         |          |         |           |           |         |             |           |          |      |
|           |      | funct | inctions of AGC in an isolated and interconnected systems.                                 |          |         |         |          |         |           |           |         |             |           |          |      |
|           | CO5: | Relat | e the v                                                                                    | oltage   | and re  | eactive | powe     | r contr | ols in a  | an inter  | connect | ed pow      | er syste  | m.       |      |
|           | CO6: | Expla | in relia                                                                                   | bility,  | securi  | ty, con | tingen   | cy ana  | lysis, st | tate esti | mation  | and its     | issues ir | n power  |      |
|           |      | syste | ms.                                                                                        | -        |         | -       | -        | -       | -         |           |         |             |           | -        |      |
| Mapping   | PO1  | PO2   | PO3                                                                                        | PO4      | PO5     | PO6     | PO7      | PO8     | PO9       | PO10      | PO11    | PO12        | PSO1      | PSO2     | PSO3 |
| CO1       | 2    | -     | -                                                                                          | -        | -       | -       | -        | -       | -         | -         | -       | -           | -         | -        | -    |

| CO2 | 3 | 2 | 2 | - | - | - | - | - | - | - | - | 2 | 2 | - | 2 |
|-----|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| CO3 | 3 | 3 | 2 | - | - | - | - | - | - | - | - | 2 | 2 | - | 2 |
| CO4 | 3 | 3 | 2 | - | - | - | - | - | - | - | - | 2 | 2 | - | - |
| CO5 | 2 | 2 | - | - | - | - | - | - | - | - | - | 2 | 2 | - | 2 |
| CO6 | 2 | 2 | - | 2 | - | - | - | - | - | - | - | 2 | 2 | - | 2 |

|           |      | S     | Subjec                                                            | t: INI | DUSTR    | RIAL D   | RIVE     | S ND /   | APPLI    | CATIO     | NS-15E   | E82       |         |       |      |  |
|-----------|------|-------|-------------------------------------------------------------------|--------|----------|----------|----------|----------|----------|-----------|----------|-----------|---------|-------|------|--|
| Course    | CO1: | Expla | ain cho                                                           | ice of | electri  | c drive  | s,its pa | arts and | d adva   | ntages    |          |           |         |       |      |  |
| Outcomes: | CO2: | Discu | iss dyn                                                           | amics  | and m    | odes o   | f opera  | ation o  | felect   | ric drive | s.       |           |         |       |      |  |
|           | CO3: | Selec | t the p                                                           | oweri  | rating o | of mot   | or and   | contro   | ol of do | c motor   | using re | ectifiers |         |       |      |  |
|           | CO4: | Analy | ze the                                                            | perfo  | rmance   | e of ind | ductior  | n moto   | r drive  | s under   | differe  | nt condi  | tions   |       |      |  |
|           | CO5: | Analy | se the                                                            | contro | ol of in | ductio   | n moto   | or, synd | chrono   | us moto   | or and s | tepper i  | motor d | rives |      |  |
|           | CO6: | Discu | scuss typical applications of electrical drives in the industry . |        |          |          |          |          |          |           |          |           |         |       |      |  |
| Mapping   | PO1  | PO2   | PO3                                                               | PO4    | PO5      | PO6      | PO7      | PO8      | PO9      | PO10      | PO11     | PO12      | PSO1    | PSO2  | PSO3 |  |
| CO1       | 3    | -     | -                                                                 | -      | -        | -        | -        | -        | -        | -         | -        | -         | 3       | -     | 2    |  |
| CO2       | 2    | 3     | -                                                                 | -      | -        | -        | -        | -        | -        | -         | -        | -         | 3       | -     | 3    |  |
| CO3       | 2    | 3     | -                                                                 | -      | -        | -        | -        | -        | -        | -         | -        | 2         | 2       | -     | 2    |  |
| CO4       | 2    | 3     | -                                                                 | -      | -        | -        | -        | -        | -        | -         | -        | 2         | 2       | -     | 2    |  |
| CO5       | 2    | 2     | -                                                                 | -      | -        | -        | -        | -        | -        | -         | -        | 2         | 3       | -     | 2    |  |
| CO6       | 2    | -     | -                                                                 | -      | -        | -        | -        | -        | -        | -         | -        | 2         | 2       | -     | 3    |  |

|           |      |       |                                                                                       |         | Sul     | bject:   | Smart   | Grid -  | 15EE8    | 31        |           |          |           |           |       |  |
|-----------|------|-------|---------------------------------------------------------------------------------------|---------|---------|----------|---------|---------|----------|-----------|-----------|----------|-----------|-----------|-------|--|
| Course    | CO1: | Expla | in the                                                                                | archite | ecture, | measu    | uremei  | nt tech | niques   | and to    | ols for t | he anal  | ysis of a | of smart  | grid. |  |
| Outcomes: | CO2: | Discu | ss clas                                                                               | sical o | ptimiza | ation te | echniq  | ues an  | d com    | outatior  | nal meth  | nods for | smart g   | grid desi | gn,   |  |
|           |      | planr | ning an                                                                               | d oper  | ation.  |          |         |         |          |           |           |          |           |           |       |  |
|           | CO3: | Expla | in pred                                                                               | dictive | grid m  | anage    | ment a  | and cor | ntrol te | chnolog   | gy for ei | nhancin  | g the sn  | nart gric | l     |  |
|           |      | perfo | rmanc                                                                                 | е       |         |          |         |         |          |           |           |          |           |           |       |  |
|           | CO4: | Deve  | velop cleaner, more environmentally responsible technologies for the electric system. |         |         |          |         |         |          |           |           |          |           |           |       |  |
|           | CO5: | Discu | cuss the computational techniques, communication, measurement, and monitoring         |         |         |          |         |         |          |           |           |          |           |           |       |  |
|           |      | techr | nology                                                                                | tools e | essenti | al to th | ne desi | gn of t | he sma   | art grid. |           |          |           |           |       |  |
| Mapping   | PO1  | PO2   | PO3                                                                                   | PO4     | PO5     | PO6      | PO7     | PO8     | PO9      | PO10      | PO11      | PO12     | PSO1      | PSO2      | PSO3  |  |
| CO1       | 3    | 3     | -                                                                                     | I       | -       | -        | -       | -       | -        | -         | -         | -        | 2         | -         | -     |  |
| CO2       | 3    | 3     | -                                                                                     | I       | -       | -        | -       | -       | -        | -         | 3         | -        | 2         | -         | -     |  |
| CO3       | 3    | 2     | -                                                                                     | I       | -       | -        | -       | -       | -        | -         | -         | -        | 2         | -         | -     |  |
| CO4       | 2    | -     | -                                                                                     | -       | -       | -        | 3       | -       | -        | -         | -         | -        | 2         | -         | -     |  |
| CO5       | 2    | 2     | -                                                                                     | -       | -       | -        | -       | -       | -        | -         | -         | -        | 2         | -         | -     |  |

|           |      | Subje | ect: O                                                                                                                                                           | peratio | on and  | Mainte   | enance  | of Sol  | ar Elec | etric Sys | stems - 1 | 15EE832   | 2        |      |      |  |
|-----------|------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|----------|---------|---------|---------|-----------|-----------|-----------|----------|------|------|--|
| Course    | CO1: | Expla | in basi                                                                                                                                                          | cs of s | olar re | source   | data,   | its acq | uisitio | n, PV mo  | odules t  | o form a  | arrays.  |      |      |  |
| Outcomes: | CO2: | Expla | in the                                                                                                                                                           | use of  | inverte | ers, otl | ner sys | tem co  | mpon    | ents, ca  | bling us  | ed to co  | onnect t | he   |      |  |
|           |      | comp  | onent                                                                                                                                                            | s and r | nounti  | ng me    | thods ( | of the  | PV syst | tem.      |           |           |          |      |      |  |
|           | CO3: | Asses | sess the site for PV system installation and design a grid connected system and compute its                                                                      |         |         |          |         |         |         |           |           |           |          |      |      |  |
|           |      | size. | e.                                                                                                                                                               |         |         |          |         |         |         |           |           |           |          |      |      |  |
|           | CO4: | Expla | in inst                                                                                                                                                          | allatio | n, com  | missio   | ning, o | peratio | on and  | mainte    | nance o   | of PV sys | tems.    |      |      |  |
|           | CO5: | Expla | <br>Iain installation, commissioning, operation and maintenance of PV systems.<br>Iain the types of financial incentives available, calculation of payback time. |         |         |          |         |         |         |           |           |           |          |      |      |  |
| Mapping   | PO1  | PO2   | PO3                                                                                                                                                              | PO4     | PO5     | PO6      | PO7     | PO8     | PO9     | PO10      | PO11      | PO12      | PSO1     | PSO2 | PSO3 |  |

| CO1 | 3 | 2 | - | - | - | - | - | - | - | - | - | - | 2 | - | - |
|-----|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| CO2 | 3 | - | - | - | - | - | - | - | - | - | - | - | 3 | - | - |
| CO3 | 3 | 3 | - | - | - | - | - | - | - | - | - | - | 3 | - | - |
| CO4 | 3 | - | - | - | - | - | - | - | - | - | - | - | 3 | - | - |
| CO5 | 3 | - | - | - | - | - | - | - | - | - | 3 | - | 3 | - | - |

|           |      | Subj  | ect: II                                                                                   | NTEG    | RATIC   | ON OF     | DISTI  | RIBUT  | ED GI   | ENERA    | TION-1   | 5EE833  | 3         |           |      |
|-----------|------|-------|-------------------------------------------------------------------------------------------|---------|---------|-----------|--------|--------|---------|----------|----------|---------|-----------|-----------|------|
| Course    | CO1: | Expla | in pow                                                                                    | ver ger | neratio | n by al   | ternat | e ener | gy soui | rce like | wind po  | wer and | d solar p | ower      |      |
| Outcomes: | CO2: | Discu | iss the                                                                                   | integra | ation c | of distri | buted  | genera | ation a | nd its e | ffect on | the per | forman    | ce of the | ē    |
|           |      | powe  | er syste                                                                                  | em.     |         |           |        |        |         |          |          |         |           |           |      |
|           | CO3: | Exam  | nine the impact of integration of distributed generation on Voltage Magnitude Variations. |         |         |           |        |        |         |          |          |         |           |           |      |
|           | CO4: | Expla | in the impact of integration of distributed generation on Power Quality Disturbances.     |         |         |           |        |        |         |          |          |         |           |           |      |
| Mapping   | PO1  | PO2   | PO3                                                                                       | PO4     | PO5     | PO6       | PO7    | PO8    | PO9     | PO10     | PO11     | PO12    | PSO1      | PSO2      | PSO3 |
| CO1       | -    | -     | -                                                                                         | -       | -       | 3         | 3      | -      | -       | -        | -        | 2       | -         | -         | 2    |
| CO2       | 3    | 3     | -                                                                                         | 3       | -       | -         | 3      | -      | -       | -        | -        | 2       | 3         | -         | 2    |
| CO3       | 3    | 3     | 2                                                                                         | 3       | 3       | -         | -      | -      | -       | -        | -        | 3       | 3         | -         | 2    |
| CO4       | 3    | 3     | 2                                                                                         | 3       | 3       | -         | -      | -      | -       | -        | -        | 3       | 3         | -         | 2    |

|           |      |        | 1                                                                                                                               | Subjec   | et: Po    | wer Sy   | stem ii  | n Emer    | gencie   | s - 15El             | E834     |           |          |          |       |  |
|-----------|------|--------|---------------------------------------------------------------------------------------------------------------------------------|----------|-----------|----------|----------|-----------|----------|----------------------|----------|-----------|----------|----------|-------|--|
| Course    | CO1: | Expla  | in dist                                                                                                                         | urband   | es tha    | t may (  | occur i  | n a pov   | wer sys  | stem an              | d the in | npact of  | them o   | n its    |       |  |
| Outcomes: |      | opera  | ation.                                                                                                                          |          |           |          |          |           |          |                      |          |           |          |          |       |  |
|           | CO2: | Give   | the de                                                                                                                          | finitior | ns, con   | cepts a  | and sta  | ndard     | termir   | nology u             | sed in t | he litera | ature on | emerge   | ency  |  |
|           |      | contr  | ol and                                                                                                                          | discus   | s the e   | effect c | of syste | em stru   | icture ( | on the f             | orm of e | emergei   | ncy cont | trol     |       |  |
|           | CO3: | Discu  | ss the                                                                                                                          | structu  | ure, fu   | nction   | and al   | ternati   | ves for  | <sup>-</sup> main ti | ransmis  | sion      |          |          |       |  |
|           | CO4: | discu  | ss stan                                                                                                                         | dards    | of secu   | urity ar | nd qua   | lity of s | supply   | in planr             | ning and | l operat  | ion,time | escales, | tasks |  |
|           |      | in sys | ystem operation and control, SCADA facilities - functions, structure, performance criteria,<br>a and human - computer interface |          |           |          |          |           |          |                      |          |           |          |          |       |  |
|           |      | data   | a and human - computer interface                                                                                                |          |           |          |          |           |          |                      |          |           |          |          |       |  |
|           | CO5: | discu  | a and human - computer interface<br>cuss different simulators used in training, facilities and characteristics for emergency    |          |           |          |          |           |          |                      |          |           |          |          |       |  |
|           |      | contr  | ol, and                                                                                                                         | l benet  | fits of e | emerge   | ency co  | ontrol a  | and em   | nergenc              | y contro | ol in the | future.  |          |       |  |
| Mapping   | PO1  | PO2    | PO3                                                                                                                             | PO4      | PO5       | PO6      | PO7      | PO8       | PO9      | PO10                 | PO11     | PO12      | PSO1     | PSO2     | PSO3  |  |
| CO1       | 3    | 2      | -                                                                                                                               | -        | -         | -        | -        | -         | -        | -                    | -        | -         | -        | -        | 3     |  |
| CO2       | 3    | 2      | -                                                                                                                               | -        | -         | -        | -        | -         | -        | -                    | -        | -         | -        | -        | 3     |  |
| CO3       | 3    | 2      | -                                                                                                                               | -        | -         | -        | -        | -         | -        | -                    | -        | -         | -        | -        | 3     |  |
| CO4       | 3    | 2      | -                                                                                                                               | -        | -         | -        | -        | -         | -        | -                    | -        | -         | -        | -        | 3     |  |
| CO5       | 3    | 2      | -                                                                                                                               | -        | -         | -        | -        | -         | -        | -                    | -        | -         | -        | -        | 3     |  |

|           |      | S     | ubject                                                       | : INT   | ERNS    | HIP / F   | PROFE    | SSIO    | NAL P    | RACTI                | CE -15E  | EE84      |       |      |      |  |
|-----------|------|-------|--------------------------------------------------------------|---------|---------|-----------|----------|---------|----------|----------------------|----------|-----------|-------|------|------|--|
| Course    | CO1: | Adap  | t the p                                                      | ractica | al expe | rience    | within   | indust  | try in w | hich th              | e intern | ship is o | done. |      |      |  |
| Outcomes: | CO2: | Apply | / know                                                       | ledge   | and ski | ills lear | ned to   | classr  | oom w    | ork.                 |          |           |       |      |      |  |
|           | CO3: | Deve  | lop the                                                      | e exper | rience  | in the    | activit  | ies and | l functi | ions of <sub>l</sub> | orofessi | onals.    |       |      |      |  |
|           | CO4: | Deve  | evelop and refine the oral and written communication skills. |         |         |           |          |         |          |                      |          |           |       |      |      |  |
|           | CO5: | Ident | entify areas for future knowledge and skill development.     |         |         |           |          |         |          |                      |          |           |       |      |      |  |
|           | CO6: | Adap  | t the k                                                      | nowle   | dge of  | admin     | istratio | on, mai | rketing  | , financ             | e and e  | conomi    | cs.   |      |      |  |
| Mapping   | PO1  | PO2   | PO3                                                          | PO4     | PO5     | PO6       | PO7      | PO8     | PO9      | PO10                 | PO11     | PO12      | PSO1  | PSO2 | PSO3 |  |
| CO1       | -    | -     | 2                                                            | 2       | 3       | -         | -        | 3       | 2        | 3                    | 3        | 2         | 3     | 3    | 3    |  |
| CO2       | -    | -     | 2                                                            | 2       | 2       | -         | -        | 2       | 2        | 3                    | 3        | 2         | 3     | 2    | 3    |  |

| CO3 | - | - | 2 | 2 | 3 | - | - | 3 | 3 | 3 | 3 | 2 | 3 | 2 | 3 |
|-----|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| CO4 | - | - | 2 | 3 | 2 | - | - | 2 | 3 | 3 | 3 | 2 | 3 | 2 | 3 |
| CO5 | - | - | 3 | 3 | 2 | - | - | 2 | 2 | 3 | 3 | 2 | 3 | 3 | 3 |
| CO6 | - | - | 3 | 3 | 2 | - | - | 3 | 3 | 3 | 3 | 2 | 3 | 3 | 3 |

|           |      |                |                                                                                                     |                     | Su               | bject:            | PROJI                        | ECT -1               | 5EEP8              | 35                  |                  |         |          |           |      |  |
|-----------|------|----------------|-----------------------------------------------------------------------------------------------------|---------------------|------------------|-------------------|------------------------------|----------------------|--------------------|---------------------|------------------|---------|----------|-----------|------|--|
| Course    | CO1: | Anal           | yze en                                                                                              | gineeri             | ing pro          | blems             | for the                      | e need               | of soc             | iety.               |                  |         |          |           |      |  |
| Outcomes: | CO2: | Desig<br>inter | n solu <sup>.</sup><br>pretati                                                                      | tions fo<br>on of c | or engi<br>lata. | neerin            | g prob                       | lems u               | sing m             | odern t             | ool/tecl         | nnology | to inve  | stigate v | with |  |
|           | CO3: | Discu<br>susta | iss the<br>inable                                                                                   | impac<br>develo     | t of th<br>opmen | e engiı<br>t with | neerin <sub>i</sub><br>commi | g soluti<br>it to pr | ions in<br>ofessio | societa<br>onal eth | l and en<br>ics. | vironm  | ental co | ntexts f  | or   |  |
|           | CO4: | Deve           | elop team work for conducting the project and Communicate effectively through reports & sentations. |                     |                  |                   |                              |                      |                    |                     |                  |         |          |           |      |  |
|           | CO5: | Adap           | t engir                                                                                             | neering             | g, mana          | ageme             | nt and                       | ethica               | l princi           | iples for           | Project          | : manag | ement a  | and fina  | nce. |  |
| Mapping   | PO1  | PO2            | PO3                                                                                                 | PO4                 | PO5              | PO6               | PO7                          | PO8                  | PO9                | PO10                | PO11             | PO12    | PSO1     | PSO2      | PSO3 |  |
| CO1       | 3    | 3              | 3                                                                                                   | -                   | -                | 3                 | -                            | -                    | -                  | -                   | -                | 2       | 3        | -         | -    |  |
| CO2       | -    | -              | 3                                                                                                   | 3                   | 3                | -                 | -                            | -                    | -                  | -                   | -                | 3       | 3        | -         | -    |  |
| CO3       | -    | -              | 3                                                                                                   | -                   | -                | 3                 | 3                            | 3                    | -                  | -                   | -                | 3       | -        | -         | 3    |  |
| CO4       | -    | -              | 3                                                                                                   | -                   | -                | -                 | -                            | -                    | 3                  | 3                   | -                | 3       | -        | 3         | -    |  |
| CO5       | -    | -              | 3                                                                                                   | -                   | -                | -                 | -                            | 3                    | -                  | -                   | 3                | 3       | 3        | -         | 3    |  |

|           | Subject: SEMINAR -15EES86 |                                                                                                  |     |     |     |     |     |     |     |      |      |      |      |      |      |  |
|-----------|---------------------------|--------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|--|
| Course    | CO1:                      | Develop knowledge in the field of electrical and electronics engineering and other disciplines   |     |     |     |     |     |     |     |      |      |      |      |      |      |  |
| Outcomes: |                           | through independent learning and collaborative study.                                            |     |     |     |     |     |     |     |      |      |      |      |      |      |  |
|           | CO2:                      | Identify and discuss current, real-time issues                                                   |     |     |     |     |     |     |     |      |      |      |      |      |      |  |
|           | CO3:                      | Develop oral and written communication skills                                                    |     |     |     |     |     |     |     |      |      |      |      |      |      |  |
|           | CO4:                      | Build an appreciation of the self in relation to its larger diverse social and academic contexts |     |     |     |     |     |     |     |      |      |      |      |      |      |  |
|           | CO5:                      | Apply principles of ethics and respect in interaction with others.                               |     |     |     |     |     |     |     |      |      |      |      |      |      |  |
| Mapping   | PO1                       | PO2                                                                                              | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |  |
| CO1       | 3                         | 2                                                                                                | -   | 3   | 2   | 3   | -   | -   | -   | 3    | -    | -    | 3    | 2    | -    |  |
| CO2       | -                         | -                                                                                                | -   | 3   | -   | -   | 3   | -   | -   | -    | -    | 2    | -    | 2    | -    |  |
| CO3       | -                         | -                                                                                                | -   | -   | -   | -   | -   | -   | -   | 3    | -    | 3    | -    | -    | -    |  |
| CO4       | -                         | -                                                                                                | -   | -   | -   | 3   | 3   | -   | -   | -    | -    | 3    | -    | -    | -    |  |
| CO5       | -                         | -                                                                                                | -   | -   | -   | -   | -   | 3   | -   | 3    | -    | 3    | -    | -    | -    |  |